期刊文献+
共找到563篇文章
< 1 2 29 >
每页显示 20 50 100
Classification of congenital cataracts based on multidimensional phenotypes and its association with visual outcomes
1
作者 Yuan Tan Ying-Shi Zou +8 位作者 Ying-Lin Yu Le-Yi Hu Ting Zhang Hui Chen Ling Jin Duo-Ru Lin Yi-Zhi Liu Hao-Tian Lin Zhen-Zhen Liu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期473-479,共7页
●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patient... ●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited.Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients’medical records.A hierarchical cluster analysis was performed.The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts.●RESULTS:A total of 164 children(299 eyes)were divided into two clusters based on their ocular features.Cluster 1(96 eyes)had a shorter axial length(mean±SD,19.44±1.68 mm),a low prevalence of macular abnormalities(1.04%),and no retinal abnormalities or posterior cataracts.Cluster 2(203 eyes)had a greater axial length(mean±SD,20.42±2.10 mm)and a higher prevalence of macular abnormalities(8.37%),retinal abnormalities(98.52%),and posterior cataracts(4.93%).Compared with the eyes in Cluster 2(57.14%),those in Cluster 1(71.88%)had a 2.2 times higher chance of good best-corrected visual acuity[<0.7 logMAR;OR(95%CI),2.20(1.25–3.81);P=0.006].●CONCLUSION:This retrospective study categorizes congenital cataracts into two distinct clusters,each associated with a different likelihood of visual outcomes.This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit,thereby making strides toward precision medicine in the field of congenital cataracts. 展开更多
关键词 classification congenital cataract PHENOTYPE visual acuity cluster analysis
下载PDF
A survey of fine-grained visual categorization based on deep learning
2
作者 XIE Yuxiang GONG Quanzhi +2 位作者 LUAN Xidao YAN Jie ZHANG Jiahui 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1337-1356,共20页
Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categ... Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction. 展开更多
关键词 deep learning fine-grained visual categorization convolutional neural network(CNN) visual attention
下载PDF
Discussion on classification and naming scheme of fine-grained sedimentary rocks 被引量:1
3
作者 PENG Jun ZENG Yao +2 位作者 YANG Yiming YU Ledan XU Tianyu 《Petroleum Exploration and Development》 CSCD 2022年第1期121-132,共12页
Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine... Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine-grained sedimentary rocks are discussed. On this basis, following the principle of three-level nomenclature, a new scheme of rock classification and naming for fine-grained sedimentary rocks is determined from two perspectives: First, fine-grained sedimentary rocks are divided into 12 types in two major categories, mudstone and siltstone, according to particle size(sand, silt and mud). Second,fine-grained sedimentary rocks are divided into 18 types in four categories, carbonate rock, fine-grained felsic sedimentary rock,clay rock and mixed fine-grained sedimentary rock according to mineral composition(carbonate minerals, felsic detrital minerals and clay minerals as three end elements). Considering the importance of organic matter in unconventional oil and gas generation and evaluation, organic matter is taken as the fourth element in the scheme. Taking the organic matter contents of 0.5% and 2% as dividing points, fine grained sedimentary rocks are divided into three categories, organic-poor, organic-bearing,and organic-rich ones. The new scheme meets the requirement of unconventional oil and gas exploration and development today and solves the problem of conceptual confusion in fine-grained sedimentary rocks, providing a unified basic term system for the research of fine-grained sedimentology. 展开更多
关键词 fine-grained sedimentary rock rock classification three-level nomenclature particle size mineral composition
下载PDF
Fine-Grained Classification of Remote Sensing Ship Images Based on Improved VAN
4
作者 Guoqing Zhou Liang Huang Qiao Sun 《Computers, Materials & Continua》 SCIE EI 2023年第11期1985-2007,共23页
The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,th... The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,the current model does not examine the properties of ship targets in remote sensing images with mixed multi-granularity features and a complicated backdrop.There is still an opportunity for future enhancement of the classification impact.To solve the challenges brought by the above characteristics,this paper proposes a Metaformer and Residual fusion network based on Visual Attention Network(VAN-MR)for fine-grained classification tasks.For the complex background of remote sensing images,the VAN-MR model adopts the parallel structure of large kernel attention and spatial attention to enhance the model’s feature extraction ability of interest targets and improve the classification performance of remote sensing ship targets.For the problem of multi-grained feature mixing in remote sensing images,the VAN-MR model uses a Metaformer structure and a parallel network of residual modules to extract ship features.The parallel network has different depths,considering both high-level and lowlevel semantic information.The model achieves better classification performance in remote sensing ship images with multi-granularity mixing.Finally,the model achieves 88.73%and 94.56%accuracy on the public fine-grained ship collection-23(FGSC-23)and FGSCR-42 datasets,respectively,while the parameter size is only 53.47 M,the floating point operations is 9.9 G.The experimental results show that the classification effect of VAN-MR is superior to that of traditional CNNs model and visual model with Transformer structure under the same parameter quantity. 展开更多
关键词 fine-grained classification metaformer remote sensing RESIDUAL ship image
下载PDF
Natural Scene Classification Inspired by Visual Perception and Cognition Mechanisms
5
作者 ZHANG Rui 《重庆理工大学学报(自然科学)》 CAS 2011年第7期24-43,共20页
The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natu... The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natural scene image classification.This approach consists of one visual perception model and two visual cognition models.The visual perception model,composed of two steps,is used to extract discriminative features from natural scene images.In the first step,we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform,which can decompose a natural scene image into a series of 2D spatial structure signals.In the second step,a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals.Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model.At last,we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization.Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification. 展开更多
关键词 natural scene classification visual perception model visual cognition model
下载PDF
VMCTE:Visualization-BasedMalware Classification Using Transfer and Ensemble Learning
6
作者 Zhiguo Chen Jiabing Cao 《Computers, Materials & Continua》 SCIE EI 2023年第5期4445-4465,共21页
The Corona Virus Disease 2019(COVID-19)effect has made telecommuting and remote learning the norm.The growing number of Internet-connected devices provides cyber attackers with more attack vectors.The development of m... The Corona Virus Disease 2019(COVID-19)effect has made telecommuting and remote learning the norm.The growing number of Internet-connected devices provides cyber attackers with more attack vectors.The development of malware by criminals also incorporates a number of sophisticated obfuscation techniques,making it difficult to classify and detect malware using conventional approaches.Therefore,this paper proposes a novel visualization-based malware classification system using transfer and ensemble learning(VMCTE).VMCTE has a strong anti-interference ability.Even if malware uses obfuscation,fuzzing,encryption,and other techniques to evade detection,it can be accurately classified into its corresponding malware family.Unlike traditional dynamic and static analysis techniques,VMCTE does not require either reverse engineering or the aid of domain expert knowledge.The proposed classification system combines three strong deep convolutional neural networks(ResNet50,MobilenetV1,and MobilenetV2)as feature extractors,lessens the dimension of the extracted features using principal component analysis,and employs a support vector machine to establish the classification model.The semantic representations of malware images can be extracted using various convolutional neural network(CNN)architectures,obtaining higher-quality features than traditional methods.Integrating fine-tuned and non-fine-tuned classification models based on transfer learning can greatly enhance the capacity to classify various families ofmalware.The experimental findings on the Malimg dataset demonstrate that VMCTE can attain 99.64%,99.64%,99.66%,and 99.64%accuracy,F1-score,precision,and recall,respectively. 展开更多
关键词 Malware classification ensemble learning visualIZATION transfer learning
下载PDF
Ransomware Classification Framework Using the Behavioral Performance Visualization of Execution Objects
7
作者 Jun-Seob Kim Ki-Woong Park 《Computers, Materials & Continua》 SCIE EI 2022年第8期3401-3424,共24页
A ransomware attack that interrupted the operation of Colonial Pipeline(a large U.S.oil pipeline company),showed that security threats by malware have become serious enough to affect industries and social infrastructu... A ransomware attack that interrupted the operation of Colonial Pipeline(a large U.S.oil pipeline company),showed that security threats by malware have become serious enough to affect industries and social infrastructure rather than individuals alone.The agents and characteristics of attacks should be identified,and appropriate strategies should be established accordingly in order to respond to such attacks.For this purpose,the first task that must be performed is malware classification.Malware creators are well aware of this and apply various concealment and avoidance techniques,making it difficult to classify malware.This study focuses on new features and classification techniques to overcome these difficulties.We propose a behavioral performance visualization method using utilization patterns of system resources,such as the central processing unit,memory,and input/output,that are commonly used in performance analysis or tuning of programs.We extracted the usage patterns of the system resources for ransomware to performbehavioral performance visualization.The results of the classification performance evaluation using the visualization results indicate an accuracy of at least 98.94%with a 3.69%loss rate.Furthermore,we designed and implemented a framework to perform the entire process—from data extraction to behavioral performance visualization and classification performance measurement—that is expected to contribute to related studies in the future. 展开更多
关键词 Behavioral performance visualization ransomware malware classification
下载PDF
Multi-Branch Deepfake Detection Algorithm Based on Fine-Grained Features 被引量:1
8
作者 Wenkai Qin Tianliang Lu +2 位作者 Lu Zhang Shufan Peng Da Wan 《Computers, Materials & Continua》 SCIE EI 2023年第10期467-490,共24页
With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability.... With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability.Currently,most algorithms define deepfake detection as a binary classification problem,i.e.,global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false.However,the differences between real and fake samples are often subtle and local,and such global feature-based detection algorithms are not optimal in efficiency and accuracy.To this end,to enhance the extraction of forgery details in deep forgery samples,we propose a multi-branch deepfake detection algorithm based on fine-grained features from the perspective of fine-grained classification.First,to address the critical problem in locating discriminative feature regions in fine-grained classification tasks,we investigate a method for locating multiple different discriminative regions and design a lightweight feature localization module to obtain crucial feature representations by augmenting the most significant parts of the feature map.Second,using information complementation,we introduce a correlation-guided fusion module to enhance the discriminative feature information of different branches.Finally,we use the global attention module in the multi-branch model to improve the cross-dimensional interaction of spatial domain and channel domain information and increase the weights of crucial feature regions and feature channels.We conduct sufficient ablation experiments and comparative experiments.The experimental results show that the algorithm outperforms the detection accuracy and effectiveness on the FaceForensics++and Celeb-DF-v2 datasets compared with the representative detection algorithms in recent years,which can achieve better detection results. 展开更多
关键词 Deepfake detection fine-grained classification multi-branch global attention
下载PDF
Sentiment classification model for bullet screen based on self-attention mechanism 被引量:2
9
作者 ZHAO Shuxu LIU Lijiao MA Qinjing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期479-488,共10页
With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can a... With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can also reduce difficulties in management of online public opinions.A convolutional neural network model based on multi-head attention is proposed to solve the problem of how to effectively model relations among words and identify key words in emotion classification tasks with short text contents and lack of complete context information.Firstly,encode word positions so that order information of input sequences can be used by the model.Secondly,use a multi-head attention mechanism to obtain semantic expressions in different subspaces,effectively capture internal relevance and enhance dependent relationships among words,as well as highlight emotional weights of key emotional words.Then a dilated convolution is used to increase the receptive field and extract more features.On this basis,the above multi-attention mechanism is combined with a convolutional neural network to model and analyze the seven emotional categories of bullet screens.Testing from perspectives of model and dataset,experimental results can validate effectiveness of our approach.Finally,emotions of bullet screens are visualized to provide data supports for hot event controls and other fields. 展开更多
关键词 bullet screen text sentiment classification self-attention mechanism visual analysis hot events control
下载PDF
A New Childhood Pneumonia Diagnosis Method Based on Fine-Grained Convolutional Neural Network
10
作者 Yang Zhang Liru Qiu +2 位作者 Yongkai Zhu Long Wen Xiaoping Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第12期873-894,共22页
Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received ex... Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received extensive attention.However,due to the small difference between pneumonia and normal images,the performance of DL methods could be improved.This research proposes a new fine-grained Convolutional Neural Network(CNN)for children’s pneumonia diagnosis(FG-CPD).Firstly,the fine-grainedCNNclassificationwhich can handle the slight difference in images is investigated.To obtain the raw images from the real-world chest X-ray data,the YOLOv4 algorithm is trained to detect and position the chest part in the raw images.Secondly,a novel attention network is proposed,named SGNet,which integrates the spatial information and channel information of the images to locate the discriminative parts in the chest image for expanding the difference between pneumonia and normal images.Thirdly,the automatic data augmentation method is adopted to increase the diversity of the images and avoid the overfitting of FG-CPD.The FG-CPD has been tested on the public Chest X-ray 2017 dataset,and the results show that it has achieved great effect.Then,the FG-CPD is tested on the real chest X-ray images from children aged 3–12 years ago from Tongji Hospital.The results show that FG-CPD has achieved up to 96.91%accuracy,which can validate the potential of the FG-CPD. 展开更多
关键词 Childhood pneumonia diagnosis fine-grained classification YOLOv4 attention network Convolutional Neural Network(CNN)
下载PDF
Image Classification Based on Histogram Intersection Kernel
11
作者 Hanbin Xi Tiantian Chang 《Journal of Computer and Communications》 2015年第11期158-163,共6页
Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature ... Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature Transform (SIFT) descriptors;secondly, k-means cluster method was applied to separate the SIFT descriptors into groups, each group represented a visual keywords;thirdly, count the number of the SIFT descriptors in each image, and histogram of each image should be constructed;finally, Histogram Intersection Kernel should be built based on these histograms. In our experimental study, we use Corel-low images to test our method. Compared with typical RBF kernel SVM, the Histogram Intersection kernel SVM performs better than RBF kernel SVM. 展开更多
关键词 classification BAG of WORD Support VECTOR MACHINE KERNEL Function visual KEYWORDS
下载PDF
Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images
12
作者 Jieyu An Wan Mohd Nazmee Wan Zainon Zhang Hao 《Computers, Materials & Continua》 SCIE EI 2023年第6期5801-5815,共15页
Targeted multimodal sentiment classification(TMSC)aims to identify the sentiment polarity of a target mentioned in a multimodal post.The majority of current studies on this task focus on mapping the image and the text... Targeted multimodal sentiment classification(TMSC)aims to identify the sentiment polarity of a target mentioned in a multimodal post.The majority of current studies on this task focus on mapping the image and the text to a high-dimensional space in order to obtain and fuse implicit representations,ignoring the rich semantic information contained in the images and not taking into account the contribution of the visual modality in the multimodal fusion representation,which can potentially influence the results of TMSC tasks.This paper proposes a general model for Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images(ITMSC)as a way to tackle these issues and improve the accu-racy of multimodal sentiment analysis.Specifically,the ITMSC model can automatically adjust the contribution of images in the fusion representation through the exploitation of semantic descriptions of images and text similarity relations.Further,we propose a target-based attention module to capture the target-text relevance,an image-based attention module to capture the image-text relevance,and a target-image matching module based on the former two modules to properly align the target with the image so that fine-grained semantic information can be extracted.Our experimental results demonstrate that our model achieves comparable performance with several state-of-the-art approaches on two multimodal sentiment datasets.Our findings indicate that incorporating semantic descriptions of images can enhance our understanding of multimodal content and lead to improved sentiment analysis performance. 展开更多
关键词 Targeted sentiment analysis multimodal sentiment classification visual sentiment textual sentiment social media
下载PDF
Does Stem Cell Implantation Have an Effect on Severity of Retinitis Pigmentosa: Evaluation with a Classification System?
13
作者 Ayşe Öner Neslihan Sinim Kahraman 《Open Journal of Ophthalmology》 2021年第1期36-48,共13页
<strong>Background:</strong> Cell replacement therapies have been evaluated in recent years as an alternative for various retinal pathologies to evaluate the therapeutic efficacy of cell therapy, it is imp... <strong>Background:</strong> Cell replacement therapies have been evaluated in recent years as an alternative for various retinal pathologies to evaluate the therapeutic efficacy of cell therapy, it is important to measure the severity of the disease. The aim of this study was to evaluate the effect of umbilical cord derived Mesenchymal Stem Cell (UC-MSC) implantation on severity of Retinitis Pigmentosa (RP). <strong>Methods:</strong> This single-center, clinical study included data of 138 eyes of 92 patients who had a confirmed diagnosis of RP and received stem cell implantation to the suprachoroidal area with a surgical procedure. Patients were evaluated before and 1 year after the surgery regarding to the outcome measures of Best Corrected Visual Acuity (BCVA), Optical Coherence Tomography (OCT) and Visual Field (VF) tests. BCVA, VF width and ellipsoid zone (EZ) width on OCT were recorded for each patient and a scoring criterion was established for each variable varying from 0 to 5 depending on its distribution. The cumulative score (from 0 to 15) was used to classify disease severity from grade 0 to 5. <strong>Results:</strong> All of the patients completed 12-month follow-up period. The median age of the patients was 40.8 years, 46% were female, 77% had been diagnosed within 10 years and 41% had a family history. 79% of the patients with family history had autosomal recessive inheritance pattern. There were statistically significant improvements in the mean BCVA and VF scores during the study (p < 0.05). The mean score and the mean grade of the disease also improved after the treatment (p < 0.05). There was a negative correlation between BCVA improvement and scoring and grading of the disease. <strong>Conclusions:</strong> This study demonstrated beneficial effect of suprachoroidally applied UC-MSCs on BCVA, VF and the severity score and grade of the disease during 12-month follow-up period. Cell mediated therapy based on the secretion of Growth Factors (GFs) seems to be an effective and safe option for the treatment of degenerative retinal diseases. This classification is simple, produces objective measure of disease severity and gives opportunity to compare the results of different treatment modalities. 展开更多
关键词 Cell Mediated Therapy Retinitis Pigmentosa Suprachoroidal Implantation Umbilical Cord Derived Mesenchymal Stem Cell visual Function classification
下载PDF
A New Classification for Retinitis Pigmentosa Including Multifocal Electroretinography to Evaluate the Disease Severity
14
作者 Ayse Oner Neslihan Sinim Kahraman 《Open Journal of Ophthalmology》 2023年第1期37-47,共11页
Aim: To establish a useful and objective classification for retinitis pigmentosa (RP) to evaluate the disease severity. Methods: This is a retrospective cross-sectional study. Visual acuity (VA), visual field (VF) wid... Aim: To establish a useful and objective classification for retinitis pigmentosa (RP) to evaluate the disease severity. Methods: This is a retrospective cross-sectional study. Visual acuity (VA), visual field (VF) width, ellipsoid zone width on optic cohorence tomography (OCT) and multifocal electroretinography (mf ERG) values were obtained from medical records of patients with RP. A scoring criterion was developed wherein each variable was assigned a score from 0 to 5 depending on its distribution. The cumulative score (from 0 to 20) was used to classify disease severity from grade 0 to 5. The scores were correlated with each other and the final grade. Results: Data of 152 eyes of 92 patients who had the results of all tests were reviewed. The mean age was 41.2 years. The mean VA of the patients was 0.13 ± 0.16 Snellen lines. The majority of patients had a VA less than 20/40 (88.6%), a visual field smaller than 20<sup>˚</sup> (78%), and an ellipsoid zone width smaller than 7<sup>˚</sup> (84.4%). The majority of the patients (85.4%) were in advanced stage of the disease (Grade 4 and 5). Conclusions: We present a simple, objective and easy to use disease severity classification for RP which can be used to categorize patients and to evaluate and compare treatment results. 展开更多
关键词 classification Multifocal Electroretinography Retinitis Pigmentosa visual Field visual Function
下载PDF
Deep Stacked Ensemble Learning Model for COVID-19 Classification
15
作者 G.Madhu B.Lalith Bharadwaj +5 位作者 Rohit Boddeda Sai Vardhan K.Sandeep Kautish Khalid Alnowibet Adel F.Alrasheedi Ali Wagdy Mohamed 《Computers, Materials & Continua》 SCIE EI 2022年第3期5467-5486,共20页
COVID-19 is a growing problem worldwide with a high mortality rate.As a result,the World Health Organization(WHO)declared it a pandemic.In order to limit the spread of the disease,a fast and accurate diagnosis is requ... COVID-19 is a growing problem worldwide with a high mortality rate.As a result,the World Health Organization(WHO)declared it a pandemic.In order to limit the spread of the disease,a fast and accurate diagnosis is required.A reverse transcript polymerase chain reaction(RT-PCR)test is often used to detect the disease.However,since this test is time-consuming,a chest computed tomography(CT)or plain chest X-ray(CXR)is sometimes indicated.The value of automated diagnosis is that it saves time and money by minimizing human effort.Three significant contributions are made by our research.Its initial purpose is to use the essential finetuning methodology to test the action and efficiency of a variety of vision models,ranging from Inception to Neural Architecture Search(NAS)networks.Second,by plotting class activationmaps(CAMs)for individual networks and assessing classification efficiency with AUC-ROC curves,the behavior of these models is visually analyzed.Finally,stacked ensembles techniques were used to provide greater generalization by combining finetuned models with six ensemble neural networks.Using stacked ensembles,the generalization of the models improved.Furthermore,the ensemble model created by combining all of the finetuned networks obtained a state-of-the-art COVID-19 accuracy detection score of 99.17%.The precision and recall rates were 99.99%and 89.79%,respectively,highlighting the robustness of stacked ensembles.The proposed ensemble approach performed well in the classification of the COVID-19 lesions on CXR according to the experimental results. 展开更多
关键词 COVID-19 classification class activation maps(CAMs)visualization finetuning stacked ensembles automated diagnosis deep learning
下载PDF
Task-specific Part Discovery for Fine-grained Few-shot Classification
16
作者 Yongxian Wei Xiu-Shen Wei 《Machine Intelligence Research》 EI CSCD 2024年第5期954-965,共12页
Localizing discriminative object parts(e.g.,bird head)is crucial for fine-grained classification tasks,especially for the more challenging fine-grained few-shot scenario.Previous work always relies on the learned obje... Localizing discriminative object parts(e.g.,bird head)is crucial for fine-grained classification tasks,especially for the more challenging fine-grained few-shot scenario.Previous work always relies on the learned object parts in a unified manner,where they attend the same object parts(even with common attention weights)for different few-shot episodic tasks.In this paper,we propose that it should adaptively capture the task-specific object parts that require attention for each few-shot task,since the parts that can distinguish different tasks are naturally different.Specifically for a few-shot task,after obtaining part-level deep features,we learn a task-specific part-based dictionary for both aligning and reweighting part features in an episode.Then,part-level categorical prototypes are generated based on the part features of support data,which are later employed by calculating distances to classify query data for evaluation.To retain the discriminative ability of the part-level representations(i.e.,part features and part prototypes),we design an optimal transport solution that also utilizes query data in a transductive way to optimize the aforementioned distance calculation for the final predictions.Extensive experiments on five fine-grained benchmarks show the superiority of our method,especially for the 1-shot setting,gaining 0.12%,8.56%and 5.87%improvements over state-of-the-art methods on CUB,Stanford Dogs,and Stanford Cars,respectively. 展开更多
关键词 fine-grained image recognition few-shot learning transductive learning visual dictionary part feature discovery
原文传递
基于《国际功能、残疾和健康分类》评价中国智能化辅盲设备的补偿功能
17
作者 卜楠 杨祎铖 +2 位作者 宋贝贝 柏开祥 杜芸芸 《中国组织工程研究》 CAS 北大核心 2025年第17期3650-3656,共7页
背景:辅盲设备及技术的应用是当今视力障碍人群常用的干预手段,可提高日常生活活动的参与及工作学习能力,帮助其回归家庭、回归社会。数字信息和智能化时代下辅盲设备的形式、技术和功能各有不同,其分类目前暂未能得到有效统一的讨论和... 背景:辅盲设备及技术的应用是当今视力障碍人群常用的干预手段,可提高日常生活活动的参与及工作学习能力,帮助其回归家庭、回归社会。数字信息和智能化时代下辅盲设备的形式、技术和功能各有不同,其分类目前暂未能得到有效统一的讨论和评价。目的:基于《国际功能、残疾和健康分类》评价国内视力障碍人群智能化辅盲设备的补偿功能。方法:通过计算机检索中国知网、维普和万方数据库2013-01-01/2023-12-31收录的相关文献。基于《国际功能、残疾和健康分类》理论模式和框架结构,应用术语结构和编码程序归纳相关视力障碍评估类目,整理与分析国内视力障碍的智能化辅盲设备补偿功能研究与分类。结果与结论:①共纳入197篇文献:其中身体功能1篇,包含b2(b210);身体结构1篇,包含s2(s220);活动与参与共119篇,包含d1(10篇,d110、d115、d120、d140、d166),d3(4篇,d315、d325、d345、d360),d4(102篇,d465、d470),d8(3篇,d820、d825);环境因素共76篇,包含e1(72篇,e115、e120、e125、e130、e140、e150、e155、e160),e2(4篇,e210、e240);②基于《国际功能、残疾和健康分类》的视力障碍智能化辅盲设备补偿功能研究分类包含4个部分、8个分类、25个类目,领域涉及身体补偿类、生活用品类、教育学习类、出行导盲类、布局规划类。 展开更多
关键词 国际功能、残疾和健康分类 视力障碍 辅盲设备 智能化 人工智能 功能 分类 评价
下载PDF
联合判别区域特征的细粒度视觉分类方法
18
作者 康宇 郝晓丽 《计算机工程与应用》 北大核心 2025年第2期227-233,共7页
细粒度视觉分类方法的核心是定位图像中的判别区域。现有研究通过利用与改进视觉Transformer方法增强了判别区域特征的远距离依赖关系,但是大多数方法仅局限于增强显著判别区域的注意力,忽略了次显著的判别区域中可以联合提取的特征信息... 细粒度视觉分类方法的核心是定位图像中的判别区域。现有研究通过利用与改进视觉Transformer方法增强了判别区域特征的远距离依赖关系,但是大多数方法仅局限于增强显著判别区域的注意力,忽略了次显著的判别区域中可以联合提取的特征信息,导致具有相似局部特征的不同类别区分难度大,分类准确率较低。因此,提出了一种联合判别区域的提取特征方法,在自注意力模块的前端划分特征图的候选判别区域,引导模型提取不同显著程度的判别区域特征;通过双线性融合自注意力模块对多个不同显著程度的判别区域进行联合特征的提取,获取更加全面的判别区域特征信息。实验结果表明,引入联合判别区域方法的视觉Transformer网络在CUB-200-2011数据集上的准确率达92.7%,较标准视觉Transformer方法提升了2.4个百分点,并且在其余的基准数据集上均超越了当前最优的细粒度视觉分类方法。 展开更多
关键词 细粒度视觉分类 判别区域 视觉Transformer 自注意力机制
下载PDF
基于双文本提示和多重相似性学习的多标签遥感图像分类
19
作者 白淑芬 宋铁成 《电讯技术》 北大核心 2025年第1期35-42,共8页
多标签遥感图像分类旨在预测遥感图像中出现的多个相互关联的对象,其中文本标签能赋予丰富的语义信息。然而,目前多数多标签图像分类法未能充分考虑视觉语义图像-文本对信息。为了解决这一问题,提出了一种基于双文本提示和多重相似性(Bi... 多标签遥感图像分类旨在预测遥感图像中出现的多个相互关联的对象,其中文本标签能赋予丰富的语义信息。然而,目前多数多标签图像分类法未能充分考虑视觉语义图像-文本对信息。为了解决这一问题,提出了一种基于双文本提示和多重相似性(Bi-text Prompts and Multi-similarity,BTPMS)学习的多标签遥感图像分类算法。该算法首先利用场景与对象标签文本的双文本提示(Bi-text Prompts,BTP)提供丰富的先验知识,再综合考虑场景与对象标签之间的关联,对所得的文本特征和图像特征计算多重相似性,最后利用相似性得分进行多标签遥感图像分类。此外,设计了新颖的局部特征注意力(Local Feature Attention,LFA)模块,从空间与通道维度上捕捉图像中局部结构。在两个基准遥感数据集上进行广泛实验,结果表明所提算法优于对比的多标签图像分类方法。 展开更多
关键词 遥感图像 多标签图像分类 视觉语言预训练 提示学习 局部特征注意力
下载PDF
Machine learning based fileless malware traffic classification using image visualization
20
作者 Fikirte Ayalke Demmese Ajaya Neupane +3 位作者 Sajad Khorsandroo May Wang Kaushik Roy Yu Fu 《Cybersecurity》 EI CSCD 2024年第4期1-18,共18页
In today's interconnected world,network traffic is replete with adversarial attacks.As technology evolves,these attacks are also becoming increasingly sophisticated,making them even harder to detect.Fortunately,ar... In today's interconnected world,network traffic is replete with adversarial attacks.As technology evolves,these attacks are also becoming increasingly sophisticated,making them even harder to detect.Fortunately,artificial intelli-gence(Al)and,specifically machine learning(ML),have shown great success in fast and accurate detection,classifica-tion,and even analysis of such threats.Accordingly,there is a growing body of literature addressing how subfields of Al/ML(e.g.,natural language processing(NLP))are getting leveraged to accurately detect evasive malicious patterns in network traffic.In this paper,we delve into the current advancements in ML-based network traffic classification using image visualization.Through a rigorous experimental methodology,we first explore the process of network traffic to image conversion.Subsequently,we investigate how machine learning techniques can effectively leverage image visualization to accurately classify evasive malicious traces within network traffic.Through the utilization of production-level tools and utilities in realistic experiments,our proposed solution achieves an impressive accuracy rate of 99.48%in detecting fileless malware,which is widely regarded as one of the most elusive classes of malicious software. 展开更多
关键词 Network security Traffic classification Fileless malware Image visualization Machine learning INTRUSION
原文传递
上一页 1 2 29 下一页 到第
使用帮助 返回顶部