Nitrogen doped multi-channel graphite was successfully prepared by using nitrogen doping and KOH etching technologies.The three-electrode and EIS tests indicates that the etched graphite possesses lower electrochemica...Nitrogen doped multi-channel graphite was successfully prepared by using nitrogen doping and KOH etching technologies.The three-electrode and EIS tests indicates that the etched graphite possesses lower electrochemical resistance than the pristine graphite.The coin cell tests demonstrate that N doped multichannel graphite possesses a specific capacity of 361 mAh/g and coulombic efficiencies of 91.4%.No dramatic irreversible capacity loss results from the increased specific surface area(from 1.60 to 2.08 m^2/g),removing the need for a trade-off between irreversible capacity loss and surface area.Full polymer cells were fabricated and electrochemical capabilities were measured.In 3C fast charge protocol,the charging capacity can reach 51%within 10 min charge,and 100%within 30 min,demonstrating excellent fast charging characteristic.The fast charge cycle performance with 3C-rate charge and 1C-rate discharge from 4.35-3.0 V was conducted at RT temperature.The capacity retention is 94%after 600 cycles,which shows good cycle performance.展开更多
Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat ...Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat flux was evaluated under actively cooling conditions, the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces. The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100 kW electron gun in order to test the suitability and the loading limit of such materials. The surface temperature and bulk temperature distribution of the specimens were investigated. The experimental results are very encouraging that when heat flux is not more than 6 MW/m2, the surface temperature of GBST1308 is less than 1000℃, which is the lowest, compared with IG-430U and even with CX-2002U (CFC); The primary results indicate that the mechanically-joined material system by such a proper design as thin tile, super compliant layer, GBST as a PFM and copper-alloy heat sink, can be used as divertor plates for HT-7U in the first phase.展开更多
Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsula...Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsulated by nitrogen‐doped graphitic carbon were prepared by a one‐step pyrolysis of a ferric L‐glutamic acid complex.The FeC‐800 catalyst pyrolyzed at 800°C showed excellent catalytic activity(239.4μmolCO gFe–1 s–1),high C5–C11 selectivity(49%),and good stability in FTS.The high dispersion of ferric species combined with a well‐encapsulated structure can effectively inhibit the migration of iron nanoparticles during the reaction process,which is beneficial for high activity and good stability.The nitrogen‐doped graphitic carbon shell can act as an electron donor to the iron particles,thus promoting CO activation and expediting the formation of Fe5C2,which is the key factor for obtaining high C5–C11 selectivity.展开更多
Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and de...Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and detrimental environmental impact due to metal leaching.Carbon-based catalysts have the potential to overcome these limitations.In this study,monodisperse nitrogen-doped carbon nanospheres(NCs)were synthesized and loaded onto graphitic carbon nitride(g-C3N4,GCN)via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine(SCP).The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation.The nitrogen content in NC critically influences the physicochemical properties and performances of the resultant hybrids.The optimum nitrogen doping concentration was identified at 6.0 wt%.The SCP removal rates can be improved by a factor of 4.7 and 3.2,under UV and visible lights,by the GCN-NC composite due to the enhanced charge mobility and visible light harvesting.The mechanism of the improved photocatalytic performance and band structure alternation were further investigated by density functional theory(DFT)calculations.The DFT results confirm the high capability of the GCN-NC hybrids to activate the electron–hole pairs by reducing the band gap energy and efficiently separating electron/hole pairs.Superoxide and hydroxyl radicals are subsequently produced,leading to the efficient SCP removal.展开更多
Modification of graphite for anode of lithium ion batteries is investigated.Results of X-ray diffraction shows lithium and aluminum exists as Li compound (CH_3COOLi.2 H_2O) andAl compound (AlD_3) in the graphite, resp...Modification of graphite for anode of lithium ion batteries is investigated.Results of X-ray diffraction shows lithium and aluminum exists as Li compound (CH_3COOLi.2 H_2O) andAl compound (AlD_3) in the graphite, respectiovely. The Brunauer-Emmer-Teller (BET) surface area ofthe modified graphite increases. According to the electrochemical measurements of Li/C cell andprototype Li-ion batteries, the Li-doped graphite has large reversible capacity of 312.2 mA.h/g, lowirreversible capacity of 52.9 mA.h/g, and high initial coulombic efficiency of 85.51 percent. The063448 size prototype battery with Li-doped graphite anode has large discharge capacity of 845 mA.hand good cycling performance. The initial charge/discharge characteristic of Al-doped graphite isclose to those of undoped graphite, but the prototype battery with Al-doped anode shows the bestcycling performance with capacity retention ratio of 94.06 percent at the 200 th cycle.展开更多
A phosphorous-doped graphite felt(PGF) is fabricated and examined as electrode for vanadium flow battery(VFB). P doping improves the electrolyte wettability of GF and induces more defect sites on its surface, resultin...A phosphorous-doped graphite felt(PGF) is fabricated and examined as electrode for vanadium flow battery(VFB). P doping improves the electrolyte wettability of GF and induces more defect sites on its surface, resulting in significantly enhanced activity and reversibility towards VO2^+/VO2^+ and V^2+/V3^+couples. VFB with PGF electrode demonstrates outstanding performance such as high-rate capability under 50–400 mA cm^-2, wide-temperature tolerance at-20 °C–60 °C, and excellent durability over 1000 charge–discharge cycles. These merits enable PGF a promising electrode for the next-generation VFB,which can operate at high-power and all-climate conditions.展开更多
Shuttle effect,poor conductivity and large volume expansion are the main factors that hinder the practical application of sulfur cathodes.Currently,rational structure designing of carbon-based sulfur hosts is the most...Shuttle effect,poor conductivity and large volume expansion are the main factors that hinder the practical application of sulfur cathodes.Currently,rational structure designing of carbon-based sulfur hosts is the most effective strategy to address the above issues.However,the preparation process of carbon-based sulfur hosts is usually complex and costly.Therefore,it is necessary to develop an efficient and cost-effective method to fabricate carbon hosts for high-performance sulfur cathodes.Herein,we reported the fabrication of a bio-derived nitrogen doped porous carbon materials(BNPC)via a molten-salt method for high performance sulfur cathodes.The long-range-ordered honeycomb structure of BNPC is favorable for the trapping of polysulfide(PS)species and accommodates the volumetric variation of sulfur during cycling,while the high graphitization degree of BNPC favors the redox kinetics of sulfur cathodes.Moreover,the nitrogen doping content not only enhances the electrical conductivity of BNPC,but also provides ample anchoring sites for the immobilization of PS,which plays a key role in suppressing the shuttle effect.As a result,the S@BNPC cathode exhibits a high initial specific capacity of 1189.4 mA·h/g at 0.2C.After 300 cycles,S@BNPC still maintains a capacity of 703.2 mA·h/g which corresponds to a fading rate of 0.13%per cycle after the second cycle.This work offers vast opportunities for the large-scale application of high performance carbon-based sulfur hosts.展开更多
The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synth...The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synthesis,cost‐effectiveness,and high conductivity and are ideal electrocatalysts for the CO_(2) reduction reaction(CO_(2)RR).However,the unclear identification of the active N sites and the low intrinsic activity of mf‐NCs hinder the further development of high‐performance CO_(2)RR electrocat‐alysts.Achieving precise control over the synthesis of mf‐NC catalysts with well‐defined active N‐species sites is still challenging.To this end,we adopted a facile synthesis method to construct a set of mf‐NCs as robust catalysts for CO_(2)RR.The resulting best‐performing catalyst obtained a Far‐adaic efficiency of CO of approximately 90%at−0.55 V(vs.reversible hydrogen electrode)and good stability.The electrocatalytic performance and in situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy measurements collectively revealed that graphitic and pyridinic N can synergistically adsorb CO_(2) and H_(2)O and thus promote CO_(2) activation and protonation.展开更多
When ultra-thin graphite intercalation compounds(GICs) are deposited on the SiO2/Si substrate, it is found that their colors are dependent on the thickness of GIC flakes. The sample colors of ultrathin GIC flakes ca...When ultra-thin graphite intercalation compounds(GICs) are deposited on the SiO2/Si substrate, it is found that their colors are dependent on the thickness of GIC flakes. The sample colors of ultrathin GIC flakes can no longer provide qualitative information on the stage index. Here, multi-wavelength Raman spectroscopy is thus applied to study the doping inhomogeneity and staging of ultra-thin GICs by FeCl3 intercalation. The G band intensity of stage-1 GIC flakes is strongly enhanced by 532-nm laser excitation, while that of stage-2 and stage-3 flakes exhibits strong intensity enhancement for 785-nm laser excitation. The near-infrared lasers are suggested to probe the doping inhomogeneity and staging of ultra-thin GIC flakes.展开更多
Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of ...Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of hard carbon results in low electric conductivity and poor rate capability.Herein,nitrogendoped and partially graphitized hard carbons(NGHCs)derived from commercial coordination compound precursor-ethylenediaminetetraacetic acid(EDTA)disodium cobalt salt hydrate are designed and prepared as high-performance PIBs anode materials.By means of a facile annealing method,nitrogen elements and graphitic domains can be controllably introduced to NGHCs.The resulting NGHCs show structural merits of mesoporous construction,nitrogen doping and homogeneous graphitic domains,which ensures fast kinetics and electron transportation.Applying in anode for PIBs,NGHCs exhibit robust rate capability with high reversible capacity of 298.8 m Ah g^-1 at 50 m A g^-1,and stable cycle stability of 137.6 mAh g^-1 at 500 m A g^-1 after 1000 cycles.Moreover,the ex situ Raman spectra reveal a mixture"adsorption-intercalation mechanism"for potassium storage of NGHCs.More importantly,full PIBs by pairing with perylenetetracarboxylic dianhydride(PTCDA)cathode demonstrate the promising potential of practical application.In terms of commercial precursor,facile synthesis and long cycle lifespan,NGHCs represent a brilliant prospect for practical large-scale applications.展开更多
Due to its larger ionic radius,further studies are needed before graphite can be used as an anode for sodium/potassium-ion batteries(SIBs/KIBs).It is believed that doping and increasing the layer spacing can improve t...Due to its larger ionic radius,further studies are needed before graphite can be used as an anode for sodium/potassium-ion batteries(SIBs/KIBs).It is believed that doping and increasing the layer spacing can improve the Na+/K+storage.Herein,S/N co-doped graphite nanosheets(GNS)with an enlarged interlayer spacing of 0.39 nm were prepared via exfoliation with three-roll milling(TRM)combined with thiourea heated at different temperatures.This method generates abundant defects and active sites for GNS,as well as facilitates rapid access and transport of electrolytes and electrons/ions.The electrochemical results show that the S/N-doped GNS exfoliated 15 times and heated at 600°C(SNGNS15-600)with thiourea as the electrode delivers a discharge capacity of 94 mAh g–1 over 6000 cycles at 10 A g–1 with an enhanced rate capability and stable performance for application in SIBs.Calculations using density functional theory show that the increased interlayer spacing by TRM and S,N co-doping enhances the adsorption energies of Na+on graphite,thus improving the Na+storage.As the anode for KIBs,the SNGNS15-600 electrode has a capacity of 142 mAh g–1 after 5000 cycles at 0.5 A g–1.This study provides an essential theoretical basis for the effective exfoliation of layered graphite-based materials and their applications in energy storage.展开更多
In this paper,we introduced a novel method to prepare the few-layer nitrogen-doped graphene(FNG)from expandable graphite with melamine.The super-capacitive properties of FNG were thoroughly characterized by a three-el...In this paper,we introduced a novel method to prepare the few-layer nitrogen-doped graphene(FNG)from expandable graphite with melamine.The super-capacitive properties of FNG were thoroughly characterized by a three-electrode system,and the results showed the FNG electrode achieved a specific capacitance as high as 83.8 mF/cm2 together with excellent cycling stability.This method could be a novel approach to combine the pseudo-capacitors and electric double layer capacitors.展开更多
At present,the catalysts commercially used for the oxygen reduction reaction of the cathode of proton exchange membrane fuel cells(PEMFCs)are carbon-supported platinum-based catalysts.However,the carbon supports are s...At present,the catalysts commercially used for the oxygen reduction reaction of the cathode of proton exchange membrane fuel cells(PEMFCs)are carbon-supported platinum-based catalysts.However,the carbon supports are susceptible to corrosion under harsh working conditions,which greatly shortens the life of the catalysts.Highly stable carbon supports are urgently required for high-performance PEMFCs.In this work,we developed structure-stable and highly graphitized three-dimensional network carbon nanofibers(CNF)derived from polyaniline by heat treatment at 1200℃.The CNF-1200-based catalyst(PtNi/CNF-1200)loaded with PtNi nanoparticles showed excellent stability.After 5000 cycles from 1.0 to 1.5 V in oxygen saturated 0.1 M HClO_(4) electrolyte,the losses in the half-wave potential and mass activity were only 5 mV and 15%,respectively,far lower than those of commercial Pt/C.The high graphitization degree of CNF-1200 promotes the corrosion resistance of the catalyst.In addition,nitrogen doping effectively facilitates the catalyst–support interaction,stabilizes the highly dispersed PtNi nanoparticles,and improves the stability and activity of PtNi/CNF-1200.展开更多
硅负极材料因具有较高的理论容量(Li22Si5合金相对应4200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制...硅负极材料因具有较高的理论容量(Li22Si5合金相对应4200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制了硅负极材料的进一步发展。因此,本工作通过物理法利用壳聚糖和石墨对纳米硅实现碳包覆和复合,制备壳聚糖/石墨@纳米硅复合材料(C/G@Si复合材料),对C/G@Si复合材料的结构、形貌和电化学性能进行研究。结果表明:随着石墨添加量的提高,C/G@Si复合材料的可逆比容量略微下降,循环性能和导电性能显著提高。当添加50%(质量分数)石墨时,在100 mA/g的电流密度下,C/G@Si复合材料的首次放电比容量为1136.1 mAh/g,循环充放电100次后剩余容量保持在658.5 mAh/g,展示出优异的电化学性能,对进一步推广硅碳负极材料具有一定的参考价值。展开更多
基金Funded by College Scientific Research Project of Inner Mongolia Autonomous Region(No.NJZY18159)PhD Research Start-up Fund of Hebei GEO University(No.BQ2019003).
文摘Nitrogen doped multi-channel graphite was successfully prepared by using nitrogen doping and KOH etching technologies.The three-electrode and EIS tests indicates that the etched graphite possesses lower electrochemical resistance than the pristine graphite.The coin cell tests demonstrate that N doped multichannel graphite possesses a specific capacity of 361 mAh/g and coulombic efficiencies of 91.4%.No dramatic irreversible capacity loss results from the increased specific surface area(from 1.60 to 2.08 m^2/g),removing the need for a trade-off between irreversible capacity loss and surface area.Full polymer cells were fabricated and electrochemical capabilities were measured.In 3C fast charge protocol,the charging capacity can reach 51%within 10 min charge,and 100%within 30 min,demonstrating excellent fast charging characteristic.The fast charge cycle performance with 3C-rate charge and 1C-rate discharge from 4.35-3.0 V was conducted at RT temperature.The capacity retention is 94%after 600 cycles,which shows good cycle performance.
基金This work was supported by National Meg-Science Engineering Project of Chinese Gevernment.
文摘Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat flux was evaluated under actively cooling conditions, the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces. The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100 kW electron gun in order to test the suitability and the loading limit of such materials. The surface temperature and bulk temperature distribution of the specimens were investigated. The experimental results are very encouraging that when heat flux is not more than 6 MW/m2, the surface temperature of GBST1308 is less than 1000℃, which is the lowest, compared with IG-430U and even with CX-2002U (CFC); The primary results indicate that the mechanically-joined material system by such a proper design as thin tile, super compliant layer, GBST as a PFM and copper-alloy heat sink, can be used as divertor plates for HT-7U in the first phase.
文摘Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsulated by nitrogen‐doped graphitic carbon were prepared by a one‐step pyrolysis of a ferric L‐glutamic acid complex.The FeC‐800 catalyst pyrolyzed at 800°C showed excellent catalytic activity(239.4μmolCO gFe–1 s–1),high C5–C11 selectivity(49%),and good stability in FTS.The high dispersion of ferric species combined with a well‐encapsulated structure can effectively inhibit the migration of iron nanoparticles during the reaction process,which is beneficial for high activity and good stability.The nitrogen‐doped graphitic carbon shell can act as an electron donor to the iron particles,thus promoting CO activation and expediting the formation of Fe5C2,which is the key factor for obtaining high C5–C11 selectivity.
基金the partial support from the Australian Research Council Discovery Project(No:DP170104264)
文摘Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and detrimental environmental impact due to metal leaching.Carbon-based catalysts have the potential to overcome these limitations.In this study,monodisperse nitrogen-doped carbon nanospheres(NCs)were synthesized and loaded onto graphitic carbon nitride(g-C3N4,GCN)via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine(SCP).The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation.The nitrogen content in NC critically influences the physicochemical properties and performances of the resultant hybrids.The optimum nitrogen doping concentration was identified at 6.0 wt%.The SCP removal rates can be improved by a factor of 4.7 and 3.2,under UV and visible lights,by the GCN-NC composite due to the enhanced charge mobility and visible light harvesting.The mechanism of the improved photocatalytic performance and band structure alternation were further investigated by density functional theory(DFT)calculations.The DFT results confirm the high capability of the GCN-NC hybrids to activate the electron–hole pairs by reducing the band gap energy and efficiently separating electron/hole pairs.Superoxide and hydroxyl radicals are subsequently produced,leading to the efficient SCP removal.
基金This project is financially supported by the ScienceTechnology Plan of Hunan Province(No.200287)
文摘Modification of graphite for anode of lithium ion batteries is investigated.Results of X-ray diffraction shows lithium and aluminum exists as Li compound (CH_3COOLi.2 H_2O) andAl compound (AlD_3) in the graphite, respectiovely. The Brunauer-Emmer-Teller (BET) surface area ofthe modified graphite increases. According to the electrochemical measurements of Li/C cell andprototype Li-ion batteries, the Li-doped graphite has large reversible capacity of 312.2 mA.h/g, lowirreversible capacity of 52.9 mA.h/g, and high initial coulombic efficiency of 85.51 percent. The063448 size prototype battery with Li-doped graphite anode has large discharge capacity of 845 mA.hand good cycling performance. The initial charge/discharge characteristic of Al-doped graphite isclose to those of undoped graphite, but the prototype battery with Al-doped anode shows the bestcycling performance with capacity retention ratio of 94.06 percent at the 200 th cycle.
基金supported by the National Natural Science Foundation of China(No.21576154)the Shenzhen Basic Research Project(Nos.JCYJ20170818115018000,JCYJ20170307154206288,JCYJ20170412170756603)
文摘A phosphorous-doped graphite felt(PGF) is fabricated and examined as electrode for vanadium flow battery(VFB). P doping improves the electrolyte wettability of GF and induces more defect sites on its surface, resulting in significantly enhanced activity and reversibility towards VO2^+/VO2^+ and V^2+/V3^+couples. VFB with PGF electrode demonstrates outstanding performance such as high-rate capability under 50–400 mA cm^-2, wide-temperature tolerance at-20 °C–60 °C, and excellent durability over 1000 charge–discharge cycles. These merits enable PGF a promising electrode for the next-generation VFB,which can operate at high-power and all-climate conditions.
基金Project(2018YFB0104300)supported by the National Key R&D Program of ChinaProject(51774150)supported by the National Natural Science Foundation of China
文摘Shuttle effect,poor conductivity and large volume expansion are the main factors that hinder the practical application of sulfur cathodes.Currently,rational structure designing of carbon-based sulfur hosts is the most effective strategy to address the above issues.However,the preparation process of carbon-based sulfur hosts is usually complex and costly.Therefore,it is necessary to develop an efficient and cost-effective method to fabricate carbon hosts for high-performance sulfur cathodes.Herein,we reported the fabrication of a bio-derived nitrogen doped porous carbon materials(BNPC)via a molten-salt method for high performance sulfur cathodes.The long-range-ordered honeycomb structure of BNPC is favorable for the trapping of polysulfide(PS)species and accommodates the volumetric variation of sulfur during cycling,while the high graphitization degree of BNPC favors the redox kinetics of sulfur cathodes.Moreover,the nitrogen doping content not only enhances the electrical conductivity of BNPC,but also provides ample anchoring sites for the immobilization of PS,which plays a key role in suppressing the shuttle effect.As a result,the S@BNPC cathode exhibits a high initial specific capacity of 1189.4 mA·h/g at 0.2C.After 300 cycles,S@BNPC still maintains a capacity of 703.2 mA·h/g which corresponds to a fading rate of 0.13%per cycle after the second cycle.This work offers vast opportunities for the large-scale application of high performance carbon-based sulfur hosts.
文摘The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synthesis,cost‐effectiveness,and high conductivity and are ideal electrocatalysts for the CO_(2) reduction reaction(CO_(2)RR).However,the unclear identification of the active N sites and the low intrinsic activity of mf‐NCs hinder the further development of high‐performance CO_(2)RR electrocat‐alysts.Achieving precise control over the synthesis of mf‐NC catalysts with well‐defined active N‐species sites is still challenging.To this end,we adopted a facile synthesis method to construct a set of mf‐NCs as robust catalysts for CO_(2)RR.The resulting best‐performing catalyst obtained a Far‐adaic efficiency of CO of approximately 90%at−0.55 V(vs.reversible hydrogen electrode)and good stability.The electrocatalytic performance and in situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy measurements collectively revealed that graphitic and pyridinic N can synergistically adsorb CO_(2) and H_(2)O and thus promote CO_(2) activation and protonation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11225421,11474277,and 11434010)
文摘When ultra-thin graphite intercalation compounds(GICs) are deposited on the SiO2/Si substrate, it is found that their colors are dependent on the thickness of GIC flakes. The sample colors of ultrathin GIC flakes can no longer provide qualitative information on the stage index. Here, multi-wavelength Raman spectroscopy is thus applied to study the doping inhomogeneity and staging of ultra-thin GICs by FeCl3 intercalation. The G band intensity of stage-1 GIC flakes is strongly enhanced by 532-nm laser excitation, while that of stage-2 and stage-3 flakes exhibits strong intensity enhancement for 785-nm laser excitation. The near-infrared lasers are suggested to probe the doping inhomogeneity and staging of ultra-thin GIC flakes.
基金support of the Innovation Program of Central South University(No.2018zzts139)。
文摘Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of hard carbon results in low electric conductivity and poor rate capability.Herein,nitrogendoped and partially graphitized hard carbons(NGHCs)derived from commercial coordination compound precursor-ethylenediaminetetraacetic acid(EDTA)disodium cobalt salt hydrate are designed and prepared as high-performance PIBs anode materials.By means of a facile annealing method,nitrogen elements and graphitic domains can be controllably introduced to NGHCs.The resulting NGHCs show structural merits of mesoporous construction,nitrogen doping and homogeneous graphitic domains,which ensures fast kinetics and electron transportation.Applying in anode for PIBs,NGHCs exhibit robust rate capability with high reversible capacity of 298.8 m Ah g^-1 at 50 m A g^-1,and stable cycle stability of 137.6 mAh g^-1 at 500 m A g^-1 after 1000 cycles.Moreover,the ex situ Raman spectra reveal a mixture"adsorption-intercalation mechanism"for potassium storage of NGHCs.More importantly,full PIBs by pairing with perylenetetracarboxylic dianhydride(PTCDA)cathode demonstrate the promising potential of practical application.In terms of commercial precursor,facile synthesis and long cycle lifespan,NGHCs represent a brilliant prospect for practical large-scale applications.
基金supported by the Natural Science Foundation of China(Nos.51862024 and 51962023)the Key Research and Development Program of Jiangxi Province(No.20203BBE53066).
文摘Due to its larger ionic radius,further studies are needed before graphite can be used as an anode for sodium/potassium-ion batteries(SIBs/KIBs).It is believed that doping and increasing the layer spacing can improve the Na+/K+storage.Herein,S/N co-doped graphite nanosheets(GNS)with an enlarged interlayer spacing of 0.39 nm were prepared via exfoliation with three-roll milling(TRM)combined with thiourea heated at different temperatures.This method generates abundant defects and active sites for GNS,as well as facilitates rapid access and transport of electrolytes and electrons/ions.The electrochemical results show that the S/N-doped GNS exfoliated 15 times and heated at 600°C(SNGNS15-600)with thiourea as the electrode delivers a discharge capacity of 94 mAh g–1 over 6000 cycles at 10 A g–1 with an enhanced rate capability and stable performance for application in SIBs.Calculations using density functional theory show that the increased interlayer spacing by TRM and S,N co-doping enhances the adsorption energies of Na+on graphite,thus improving the Na+storage.As the anode for KIBs,the SNGNS15-600 electrode has a capacity of 142 mAh g–1 after 5000 cycles at 0.5 A g–1.This study provides an essential theoretical basis for the effective exfoliation of layered graphite-based materials and their applications in energy storage.
基金supported by the National Natural Science Foundation of China(Nos.21271082 and 21371068)。
文摘In this paper,we introduced a novel method to prepare the few-layer nitrogen-doped graphene(FNG)from expandable graphite with melamine.The super-capacitive properties of FNG were thoroughly characterized by a three-electrode system,and the results showed the FNG electrode achieved a specific capacitance as high as 83.8 mF/cm2 together with excellent cycling stability.This method could be a novel approach to combine the pseudo-capacitors and electric double layer capacitors.
基金The work was supported by the National Natural Science Foundation of China(No.92061125,22209186)Beijing Natural Science Foundation(No.Z200012)+1 种基金Jiangxi Natural Science Foundation(No.20212ACB213009,20223BBG74004)Youth Innovation Promotion Association,CAS(No.2023343).
文摘At present,the catalysts commercially used for the oxygen reduction reaction of the cathode of proton exchange membrane fuel cells(PEMFCs)are carbon-supported platinum-based catalysts.However,the carbon supports are susceptible to corrosion under harsh working conditions,which greatly shortens the life of the catalysts.Highly stable carbon supports are urgently required for high-performance PEMFCs.In this work,we developed structure-stable and highly graphitized three-dimensional network carbon nanofibers(CNF)derived from polyaniline by heat treatment at 1200℃.The CNF-1200-based catalyst(PtNi/CNF-1200)loaded with PtNi nanoparticles showed excellent stability.After 5000 cycles from 1.0 to 1.5 V in oxygen saturated 0.1 M HClO_(4) electrolyte,the losses in the half-wave potential and mass activity were only 5 mV and 15%,respectively,far lower than those of commercial Pt/C.The high graphitization degree of CNF-1200 promotes the corrosion resistance of the catalyst.In addition,nitrogen doping effectively facilitates the catalyst–support interaction,stabilizes the highly dispersed PtNi nanoparticles,and improves the stability and activity of PtNi/CNF-1200.
文摘硅负极材料因具有较高的理论容量(Li22Si5合金相对应4200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制了硅负极材料的进一步发展。因此,本工作通过物理法利用壳聚糖和石墨对纳米硅实现碳包覆和复合,制备壳聚糖/石墨@纳米硅复合材料(C/G@Si复合材料),对C/G@Si复合材料的结构、形貌和电化学性能进行研究。结果表明:随着石墨添加量的提高,C/G@Si复合材料的可逆比容量略微下降,循环性能和导电性能显著提高。当添加50%(质量分数)石墨时,在100 mA/g的电流密度下,C/G@Si复合材料的首次放电比容量为1136.1 mAh/g,循环充放电100次后剩余容量保持在658.5 mAh/g,展示出优异的电化学性能,对进一步推广硅碳负极材料具有一定的参考价值。