Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi...Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios.展开更多
The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make th...The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make the task difficult.Therefore,to enhance the accuracy of the fine-grained ship image recognition,we design a fine-grained ship image recognition network based on bilinear convolutional neural network(BCNN)with Inception and additive margin Softmax(AM-Softmax).This network improves the BCNN in two aspects.Firstly,by introducing Inception branches to the BCNN network,it is helpful to enhance the ability of extracting comprehensive features from ships.Secondly,by adding margin values to the decision boundary,the AM-Softmax function can better extend the inter-class differences and reduce the intra-class differences.In addition,as there are few publicly available datasets for fine-grained ship image recognition,we construct a Ship-43 dataset containing 47,300 ship images belonging to 43 categories.Experimental results on the constructed Ship-43 dataset demonstrate that our method can effectively improve the accuracy of ship image recognition,which is 4.08%higher than the BCNN model.Moreover,comparison results on the other three public fine-grained datasets(Cub,Cars,and Aircraft)further validate the effectiveness of the proposed method.展开更多
Asparagus stem blight,also known as“asparagus cancer”,is a serious plant disease with a regional distribution.The widespread occurrence of the disease has had a negative impact on the yield and quality of asparagus ...Asparagus stem blight,also known as“asparagus cancer”,is a serious plant disease with a regional distribution.The widespread occurrence of the disease has had a negative impact on the yield and quality of asparagus and has become one of the main problems threatening asparagus production.To improve the ability to accurately identify and localize phenotypic lesions of stem blight in asparagus and to enhance the accuracy of the test,a YOLOv8-CBAM detection algorithm for asparagus stem blight based on YOLOv8 was proposed.The algorithm aims to achieve rapid detection of phenotypic images of asparagus stem blight and to provide effective assistance in the control of asparagus stem blight.To enhance the model’s capacity to capture subtle lesion features,the Convolutional Block AttentionModule(CBAM)is added after C2f in the head.Simultaneously,the original CIoU loss function in YOLOv8 was replaced with the Focal-EIoU loss function,ensuring that the updated loss function emphasizes higher-quality bounding boxes.The YOLOv8-CBAM algorithm can effectively detect asparagus stem blight phenotypic images with a mean average precision(mAP)of 95.51%,which is 0.22%,14.99%,1.77%,and 5.71%higher than the YOLOv5,YOLOv7,YOLOv8,and Mask R-CNN models,respectively.This greatly enhances the efficiency of asparagus growers in identifying asparagus stem blight,aids in improving the prevention and control of asparagus stem blight,and is crucial for the application of computer vision in agriculture.展开更多
Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of part...Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of particles,as well as the discharge glow,strongly depend on discharge parameters.However,traditional manual diagnosis methods for recognizing discharge parameters from discharge images are complicated to operate with low accuracy,time-consuming and high requirement of instruments.To solve these problems,by combining the two mechanisms of attention mechanism(strengthening the extraction of the channel feature)and shortcut connection(enabling the input information to be directly transmitted to deep networks and avoiding the disappearance or explosion of gradients),the network of squeeze and excitation convolution with shortcut(SECS)for complex plasma image recognition is proposed to effectively improve the model performance.The results show that the accuracy,precision,recall and F1-Score of our model are superior to other models in complex plasma image recognition,and the recognition accuracy reaches 97.38%.Moreover,the recognition accuracy for the Flowers and Chest X-ray publicly available data sets reaches 97.85%and 98.65%,respectively,and our model has robustness.This study shows that the proposed model provides a new method for the diagnosis of complex plasma images and also provides technical support for the application of plasma in industrial production.展开更多
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru...Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.展开更多
Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of s...Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.展开更多
Segmentation-based offline handwritten character recognition algorithms suffered from the segmenting difficulty of interleaving and touching in handwritten manuscripts.To tackle the problem,a segmentation-free recogni...Segmentation-based offline handwritten character recognition algorithms suffered from the segmenting difficulty of interleaving and touching in handwritten manuscripts.To tackle the problem,a segmentation-free recognition algorithm based on deep learning network is proposed in this paper.The network consists of four neural layers,including input layer for image preprocessing,convolutional neural networks(CNNs)layer for feature extraction,bidirectional long-short term network(BDLSTM)layer for sequence prediction,and connectionist temporal classification(CTC)layer for text sequence alignment and classification.Besides,a novel data processing method is performed for data length equalization.Based on this,groups of experiments,based on six typical databases,involved in evaluation indicators of character correct rate,training time cost,storage space cost,and testing time cost are carried out.The experimental results show that the proposed algorithm has better performances in accuracy and efficiency than other classical algorithms.展开更多
This paper introduces an intelligent image recognition system integrated into a wheelchair based on deep learning in cold environments,aiming to improve the convenience and safety of disabled individuals.The system ad...This paper introduces an intelligent image recognition system integrated into a wheelchair based on deep learning in cold environments,aiming to improve the convenience and safety of disabled individuals.The system adopts advanced image recognition technology to monitor road conditions in real-time through the camera and to detect and measure distance to foreign objects on the road.The system visualizes the detection results on the wheelchair screen to assist the user in avoiding and improving the safety of their daily travel.In addition,the system also includes crawler tracks,seat heating,snow and rain protection,and other functions.The wheelchair has a wide range of application prospects and development potential.It is expected to be widely used in the future,providing a strong guarantee for the safe travel of disabled individuals in China.展开更多
This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Ne...This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Networks(RNNs),and Generative Adversarial Networks(GANs),has become key to enhancing the precision and efficiency of image recognition.These models are capable of processing complex visual data,facilitating efficient feature extraction and image classification.However,acquiring and annotating high-quality,diverse datasets,addressing imbalances in datasets,and model training and optimization remain significant challenges in this domain.The paper proposes strategies for improving data augmentation,optimizing model architectures,and employing automated model optimization tools to address these challenges,while also emphasizing the importance of considering ethical issues in technological advancements.As technology continues to evolve,the application of deep learning in image recognition will further demonstrate its potent capability to solve complex problems,driving society towards more inclusive and diverse development.展开更多
The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition....The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method.展开更多
With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communicati...With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database.展开更多
In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to ...In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to administrate a hierarchical list of leaf images, some sorts of edge detection can be performed to identify the individual tokens of every image and the frame of the leaf can be got to differentiate the tree species. An approach based on back-propagation neuronal network is proposed and the programming language for the implementation is also Riven by using Java. The numerical simulations results have shown that the proposed leaf strategt is effective and feasible.展开更多
Image recognition has always been a hot research topic in the scientific community and industry.The emergence of convolutional neural networks(CNN)has made this technology turned into research focus on the field of co...Image recognition has always been a hot research topic in the scientific community and industry.The emergence of convolutional neural networks(CNN)has made this technology turned into research focus on the field of computer vision,especially in image recognition.But it makes the recognition result largely dependent on the number and quality of training samples.Recently,DCGAN has become a frontier method for generating images,sounds,and videos.In this paper,DCGAN is used to generate sample that is difficult to collect and proposed an efficient design method of generating model.We combine DCGAN with CNN for the second time.Use DCGAN to generate samples and training in image recognition model,which based by CNN.This method can enhance the classification model and effectively improve the accuracy of image recognition.In the experiment,we used the radar profile as dataset for 4 categories and achieved satisfactory classification performance.This paper applies image recognition technology to the meteorological field.展开更多
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia...Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.展开更多
Recognition and analysis of dynamic information about population images during wheat growth periods can be taken for the base of quantitative diagnosis for wheat growth. A recognition system based on self-learning BP ...Recognition and analysis of dynamic information about population images during wheat growth periods can be taken for the base of quantitative diagnosis for wheat growth. A recognition system based on self-learning BP neural network for feature data of wheat population images, such as total green areas and leaves areas was designed in this paper. In addition, some techniques to create favorable conditions for image recognition was discussed, which were as follows: (1) The method of collecting images by a digital camera and assistant equipment under natural conditions in fields. (2) An algorithm of pixel labeling was used to segment image and extract feature. (3) A high pass filter based on Laplacian was used to strengthen image information. The results showed that the ANN system was availability for image recognition of wheat population feature.展开更多
In the sorting system of the production line,the object movement,fixed angle of view,light intensity and other reasons lead to obscure blurred images.It results in bar code recognition rate being low and real time bei...In the sorting system of the production line,the object movement,fixed angle of view,light intensity and other reasons lead to obscure blurred images.It results in bar code recognition rate being low and real time being poor.Aiming at the above problems,a progressive bar code compressed recognition algorithm is proposed.First,assuming that the source image is not tilted,use the direct recognition method to quickly identify the compressed source image.Failure indicates that the compression ratio is improper or the image is skewed.Then,the source image is enhanced to identify the source image directly.Finally,the inclination of the compressed image is detected by the barcode region recognition method and the source image is corrected to locate the barcode information in the barcode region recognition image.The results of multitype image experiments show that the proposed method is improved by 5+times computational efficiency compared with the former methods,and can recognize fuzzy images better.展开更多
Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are c...Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.展开更多
With the development of Deep Convolutional Neural Networks(DCNNs),the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs.Previous studies h...With the development of Deep Convolutional Neural Networks(DCNNs),the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs.Previous studies have shown that the deeper the network is,the more abstract the features are.However,the recognition ability of deep features would be limited by insufficient training samples.To address this problem,this paper derives an improved Deep Fusion Convolutional Neural Network(DF-Net)which can make full use of the differences and complementarities during network learning and enhance feature expression under the condition of limited datasets.Specifically,DF-Net organizes two identical subnets to extract features from the input image in parallel,and then a well-designed fusion module is introduced to the deep layer of DF-Net to fuse the subnet’s features in multi-scale.Thus,the more complex mappings are created and the more abundant and accurate fusion features can be extracted to improve recognition accuracy.Furthermore,a corresponding training strategy is also proposed to speed up the convergence and reduce the computation overhead of network training.Finally,DF-Nets based on the well-known ResNet,DenseNet and MobileNetV2 are evaluated on CIFAR100,Stanford Dogs,and UECFOOD-100.Theoretical analysis and experimental results strongly demonstrate that DF-Net enhances the performance of DCNNs and increases the accuracy of image recognition.展开更多
Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion a...Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition.展开更多
In industrial flotation, froth layer plays an important role and reflects directly whether coal, air, water and reagents match each other properly or not and whether the quality of flotation is good or not. So the sup...In industrial flotation, froth layer plays an important role and reflects directly whether coal, air, water and reagents match each other properly or not and whether the quality of flotation is good or not. So the supervision and recognition of the state of froth layer is very important in the flotation process. The ash content of clean coal froth was predicted through extracting the features of images of flotation froth. The froth images were classified according to their structure. A control system of adding flotation reagents was established based on the LVQ neural net.展开更多
文摘Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios.
基金This work is supported by the National Natural Science Foundation of China(61806013,61876010,62176009,and 61906005)General project of Science and Technology Planof Beijing Municipal Education Commission(KM202110005028)+2 种基金Beijing Municipal Education Commission Project(KZ201910005008)Project of Interdisciplinary Research Institute of Beijing University of Technology(2021020101)International Research Cooperation Seed Fund of Beijing University of Technology(2021A01).
文摘The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make the task difficult.Therefore,to enhance the accuracy of the fine-grained ship image recognition,we design a fine-grained ship image recognition network based on bilinear convolutional neural network(BCNN)with Inception and additive margin Softmax(AM-Softmax).This network improves the BCNN in two aspects.Firstly,by introducing Inception branches to the BCNN network,it is helpful to enhance the ability of extracting comprehensive features from ships.Secondly,by adding margin values to the decision boundary,the AM-Softmax function can better extend the inter-class differences and reduce the intra-class differences.In addition,as there are few publicly available datasets for fine-grained ship image recognition,we construct a Ship-43 dataset containing 47,300 ship images belonging to 43 categories.Experimental results on the constructed Ship-43 dataset demonstrate that our method can effectively improve the accuracy of ship image recognition,which is 4.08%higher than the BCNN model.Moreover,comparison results on the other three public fine-grained datasets(Cub,Cars,and Aircraft)further validate the effectiveness of the proposed method.
基金supported by the Feicheng Artificial Intelligence Robot and Smart Agriculture Service Platform(381387).
文摘Asparagus stem blight,also known as“asparagus cancer”,is a serious plant disease with a regional distribution.The widespread occurrence of the disease has had a negative impact on the yield and quality of asparagus and has become one of the main problems threatening asparagus production.To improve the ability to accurately identify and localize phenotypic lesions of stem blight in asparagus and to enhance the accuracy of the test,a YOLOv8-CBAM detection algorithm for asparagus stem blight based on YOLOv8 was proposed.The algorithm aims to achieve rapid detection of phenotypic images of asparagus stem blight and to provide effective assistance in the control of asparagus stem blight.To enhance the model’s capacity to capture subtle lesion features,the Convolutional Block AttentionModule(CBAM)is added after C2f in the head.Simultaneously,the original CIoU loss function in YOLOv8 was replaced with the Focal-EIoU loss function,ensuring that the updated loss function emphasizes higher-quality bounding boxes.The YOLOv8-CBAM algorithm can effectively detect asparagus stem blight phenotypic images with a mean average precision(mAP)of 95.51%,which is 0.22%,14.99%,1.77%,and 5.71%higher than the YOLOv5,YOLOv7,YOLOv8,and Mask R-CNN models,respectively.This greatly enhances the efficiency of asparagus growers in identifying asparagus stem blight,aids in improving the prevention and control of asparagus stem blight,and is crucial for the application of computer vision in agriculture.
基金This study was supported by a grand from the National Natural Science Foundation of China(No.12075315).
文摘Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of particles,as well as the discharge glow,strongly depend on discharge parameters.However,traditional manual diagnosis methods for recognizing discharge parameters from discharge images are complicated to operate with low accuracy,time-consuming and high requirement of instruments.To solve these problems,by combining the two mechanisms of attention mechanism(strengthening the extraction of the channel feature)and shortcut connection(enabling the input information to be directly transmitted to deep networks and avoiding the disappearance or explosion of gradients),the network of squeeze and excitation convolution with shortcut(SECS)for complex plasma image recognition is proposed to effectively improve the model performance.The results show that the accuracy,precision,recall and F1-Score of our model are superior to other models in complex plasma image recognition,and the recognition accuracy reaches 97.38%.Moreover,the recognition accuracy for the Flowers and Chest X-ray publicly available data sets reaches 97.85%and 98.65%,respectively,and our model has robustness.This study shows that the proposed model provides a new method for the diagnosis of complex plasma images and also provides technical support for the application of plasma in industrial production.
基金supported by the State Grid Science&Technology Project of China(5400-202224153A-1-1-ZN).
文摘Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.
基金National Natural Science Foundation of China(82274411)Science and Technology Innovation Program of Hunan Province(2022RC1021)Leading Research Project of Hunan University of Chinese Medicine(2022XJJB002).
文摘Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.
基金funded by Yunnan Province Local Undergraduate University Basic Research Joint Special Fund Project(No.202101BA070001-016).
文摘Segmentation-based offline handwritten character recognition algorithms suffered from the segmenting difficulty of interleaving and touching in handwritten manuscripts.To tackle the problem,a segmentation-free recognition algorithm based on deep learning network is proposed in this paper.The network consists of four neural layers,including input layer for image preprocessing,convolutional neural networks(CNNs)layer for feature extraction,bidirectional long-short term network(BDLSTM)layer for sequence prediction,and connectionist temporal classification(CTC)layer for text sequence alignment and classification.Besides,a novel data processing method is performed for data length equalization.Based on this,groups of experiments,based on six typical databases,involved in evaluation indicators of character correct rate,training time cost,storage space cost,and testing time cost are carried out.The experimental results show that the proposed algorithm has better performances in accuracy and efficiency than other classical algorithms.
文摘This paper introduces an intelligent image recognition system integrated into a wheelchair based on deep learning in cold environments,aiming to improve the convenience and safety of disabled individuals.The system adopts advanced image recognition technology to monitor road conditions in real-time through the camera and to detect and measure distance to foreign objects on the road.The system visualizes the detection results on the wheelchair screen to assist the user in avoiding and improving the safety of their daily travel.In addition,the system also includes crawler tracks,seat heating,snow and rain protection,and other functions.The wheelchair has a wide range of application prospects and development potential.It is expected to be widely used in the future,providing a strong guarantee for the safe travel of disabled individuals in China.
文摘This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Networks(RNNs),and Generative Adversarial Networks(GANs),has become key to enhancing the precision and efficiency of image recognition.These models are capable of processing complex visual data,facilitating efficient feature extraction and image classification.However,acquiring and annotating high-quality,diverse datasets,addressing imbalances in datasets,and model training and optimization remain significant challenges in this domain.The paper proposes strategies for improving data augmentation,optimizing model architectures,and employing automated model optimization tools to address these challenges,while also emphasizing the importance of considering ethical issues in technological advancements.As technology continues to evolve,the application of deep learning in image recognition will further demonstrate its potent capability to solve complex problems,driving society towards more inclusive and diverse development.
文摘The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method.
文摘With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database.
基金Foundation project: This paper was supported by National Natural Science Foundation of China (No. 30371126).
文摘In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to administrate a hierarchical list of leaf images, some sorts of edge detection can be performed to identify the individual tokens of every image and the frame of the leaf can be got to differentiate the tree species. An approach based on back-propagation neuronal network is proposed and the programming language for the implementation is also Riven by using Java. The numerical simulations results have shown that the proposed leaf strategt is effective and feasible.
文摘Image recognition has always been a hot research topic in the scientific community and industry.The emergence of convolutional neural networks(CNN)has made this technology turned into research focus on the field of computer vision,especially in image recognition.But it makes the recognition result largely dependent on the number and quality of training samples.Recently,DCGAN has become a frontier method for generating images,sounds,and videos.In this paper,DCGAN is used to generate sample that is difficult to collect and proposed an efficient design method of generating model.We combine DCGAN with CNN for the second time.Use DCGAN to generate samples and training in image recognition model,which based by CNN.This method can enhance the classification model and effectively improve the accuracy of image recognition.In the experiment,we used the radar profile as dataset for 4 categories and achieved satisfactory classification performance.This paper applies image recognition technology to the meteorological field.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.
基金suppported by the National Nat-ual Sience Fundation of China(990427 and“863”Opening Item(001A110-02)
文摘Recognition and analysis of dynamic information about population images during wheat growth periods can be taken for the base of quantitative diagnosis for wheat growth. A recognition system based on self-learning BP neural network for feature data of wheat population images, such as total green areas and leaves areas was designed in this paper. In addition, some techniques to create favorable conditions for image recognition was discussed, which were as follows: (1) The method of collecting images by a digital camera and assistant equipment under natural conditions in fields. (2) An algorithm of pixel labeling was used to segment image and extract feature. (3) A high pass filter based on Laplacian was used to strengthen image information. The results showed that the ANN system was availability for image recognition of wheat population feature.
基金This work was supported by Scientific Research Starting Project of SWPU[Zheng,D.,No.0202002131604]Major Science and Technology Project of Sichuan Province[Zheng,D.,No.8ZDZX0143]+1 种基金Ministry of Education Collaborative Education Project of China[Zheng,D.,No.952]Fundamental Research Project[Zheng,D.,Nos.549,550].
文摘In the sorting system of the production line,the object movement,fixed angle of view,light intensity and other reasons lead to obscure blurred images.It results in bar code recognition rate being low and real time being poor.Aiming at the above problems,a progressive bar code compressed recognition algorithm is proposed.First,assuming that the source image is not tilted,use the direct recognition method to quickly identify the compressed source image.Failure indicates that the compression ratio is improper or the image is skewed.Then,the source image is enhanced to identify the source image directly.Finally,the inclination of the compressed image is detected by the barcode region recognition method and the source image is corrected to locate the barcode information in the barcode region recognition image.The results of multitype image experiments show that the proposed method is improved by 5+times computational efficiency compared with the former methods,and can recognize fuzzy images better.
基金financially supported by the National Natural Science Foundation of China(No.42002133,42072150)Natural Science Foundation of Beijing(8204069)+1 种基金Strategic Cooperation Project of PetroChina and CUPB(ZLZX2020-01-06-01)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)
文摘Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.
基金This work is partially supported by National Natural Foundation of China(Grant No.61772561)the Key Research&Development Plan of Hunan Province(Grant No.2018NK2012)+2 种基金the Degree&Postgraduate Education Reform Project of Hunan Province(Grant No.2019JGYB154)the Postgraduate Excellent teaching team Project of Hunan Province(Grant[2019]370-133)Teaching Reform Project of Central South University of Forestry and Technology(Grant No.20180682).
文摘With the development of Deep Convolutional Neural Networks(DCNNs),the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs.Previous studies have shown that the deeper the network is,the more abstract the features are.However,the recognition ability of deep features would be limited by insufficient training samples.To address this problem,this paper derives an improved Deep Fusion Convolutional Neural Network(DF-Net)which can make full use of the differences and complementarities during network learning and enhance feature expression under the condition of limited datasets.Specifically,DF-Net organizes two identical subnets to extract features from the input image in parallel,and then a well-designed fusion module is introduced to the deep layer of DF-Net to fuse the subnet’s features in multi-scale.Thus,the more complex mappings are created and the more abundant and accurate fusion features can be extracted to improve recognition accuracy.Furthermore,a corresponding training strategy is also proposed to speed up the convergence and reduce the computation overhead of network training.Finally,DF-Nets based on the well-known ResNet,DenseNet and MobileNetV2 are evaluated on CIFAR100,Stanford Dogs,and UECFOOD-100.Theoretical analysis and experimental results strongly demonstrate that DF-Net enhances the performance of DCNNs and increases the accuracy of image recognition.
基金Project(51678075) supported by the National Natural Science Foundation of ChinaProject(2017GK2271) supported by Hunan Provincial Science and Technology Department,China
文摘Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition.
基金Supported by the Nation’s Natural Science Foundation(5 99740 3 2 )
文摘In industrial flotation, froth layer plays an important role and reflects directly whether coal, air, water and reagents match each other properly or not and whether the quality of flotation is good or not. So the supervision and recognition of the state of froth layer is very important in the flotation process. The ash content of clean coal froth was predicted through extracting the features of images of flotation froth. The froth images were classified according to their structure. A control system of adding flotation reagents was established based on the LVQ neural net.