FeCoN soft magnetic thin films are prepared by using the reactive direct-current magnetron sputtering technique. It is found that the addition of N2 can reduce the coercivity of the FeCoN film, and excellent soft magn...FeCoN soft magnetic thin films are prepared by using the reactive direct-current magnetron sputtering technique. It is found that the addition of N2 can reduce the coercivity of the FeCoN film, and excellent soft magnetic properties can be obtained when the ratio of N2 flow to total gas flow is 10%. The influences of texture, grain size, and stress on the magnetic properties and the high-frequency behaviors of the films are also discussed.展开更多
Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi ...Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi and fcc-FeNi and paramagnetic (Fe-Ni)23B6 phases were identified in the annealed samples. It was shown that in the external magnetic field the intensities of the 2nd and the 5th lines (A23 parameter) are the most sensitive M?ssbauer parameters. Rather small changes were observed in the values of internal magnetic field. Our results showed that the amorphous precursor is more sensitive to the influence of external magnetic field than the nanocrystalline alloy. All spectra of amorphous precursor showed the increase of A23 parameter and decrease of internal magnetic field values of about 1 T (±0.5 T) under influence of external magnetic field. In the case of nanocrystalline samples the tendency for the values of internal magnetic field is similar but the effect is not so pronounced. The measurements confirmed that even weak external magnetic field affected orientation of the net magnetic moments. Our results indicate that effect of the external magnetic field is stronger in the case of amorphous samples due to their disordered structure.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874060 and 60803035)
文摘FeCoN soft magnetic thin films are prepared by using the reactive direct-current magnetron sputtering technique. It is found that the addition of N2 can reduce the coercivity of the FeCoN film, and excellent soft magnetic properties can be obtained when the ratio of N2 flow to total gas flow is 10%. The influences of texture, grain size, and stress on the magnetic properties and the high-frequency behaviors of the films are also discussed.
文摘Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi and fcc-FeNi and paramagnetic (Fe-Ni)23B6 phases were identified in the annealed samples. It was shown that in the external magnetic field the intensities of the 2nd and the 5th lines (A23 parameter) are the most sensitive M?ssbauer parameters. Rather small changes were observed in the values of internal magnetic field. Our results showed that the amorphous precursor is more sensitive to the influence of external magnetic field than the nanocrystalline alloy. All spectra of amorphous precursor showed the increase of A23 parameter and decrease of internal magnetic field values of about 1 T (±0.5 T) under influence of external magnetic field. In the case of nanocrystalline samples the tendency for the values of internal magnetic field is similar but the effect is not so pronounced. The measurements confirmed that even weak external magnetic field affected orientation of the net magnetic moments. Our results indicate that effect of the external magnetic field is stronger in the case of amorphous samples due to their disordered structure.