期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BSFinformer模型的金融数据特征选择及预测
1
作者
朱晓彤
林培光
+3 位作者
孙玫
王倩
李金玉
王杰茹
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第3期442-450,共9页
金融领域的长时间序列预测正在面对复杂的市场和众多金融产品的挑战,传统的时序数据预测方法在处理线性分布数据时表现良好,但对于特征参数冗余和非线性长序列金融产品数据的预测效果有限.为了解决这一问题,提出一种长时间序列预测方法B...
金融领域的长时间序列预测正在面对复杂的市场和众多金融产品的挑战,传统的时序数据预测方法在处理线性分布数据时表现良好,但对于特征参数冗余和非线性长序列金融产品数据的预测效果有限.为了解决这一问题,提出一种长时间序列预测方法BSFinformer(Boruta-SHAP+Finformer),利用金融数据的时间相关性并综合运用BorutaSHAP,Finformer等技术来完成特征选择及预测功能.该方法首先引入Boruta-SHAP模块,利用XgBoost和SHAP分析方法进行特征选择,从给定的特征集中识别出与金融时间序列预测任务相关的重要特征,并解释这些特征对预测的影响.其次,利用Transformer结构和自注意力机制,改进为Finformer模块,将长序列金融数据分解为趋势、周期和残差成分,结合稀疏自注意力机制.在多个真实金融数据集上进行了实验评估.实验结果显示,BSFinformer对金融产品的价格预测表现出优异的性能,与其他预测方法相比,能准确捕捉长期趋势和周期性来实现高质量的预测.具体地,和传统的Transformer模型相比,在三个实验数据集上,BSFinformer的均方误差分别降低了52%,16%和19%,平均绝对误差分别降低了34%,25%和11%,为金融数据的长期时间序列预测提供了一种有效的解决方案.
展开更多
关键词
特征选择
Boruta-SHAP
长时间序列
finformer
金融数据预测
下载PDF
职称材料
题名
基于BSFinformer模型的金融数据特征选择及预测
1
作者
朱晓彤
林培光
孙玫
王倩
李金玉
王杰茹
机构
山东财经大学计算机科学与技术学院
山东财经大学财政税务学院
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第3期442-450,共9页
基金
国家自然科学基金(61802230)。
文摘
金融领域的长时间序列预测正在面对复杂的市场和众多金融产品的挑战,传统的时序数据预测方法在处理线性分布数据时表现良好,但对于特征参数冗余和非线性长序列金融产品数据的预测效果有限.为了解决这一问题,提出一种长时间序列预测方法BSFinformer(Boruta-SHAP+Finformer),利用金融数据的时间相关性并综合运用BorutaSHAP,Finformer等技术来完成特征选择及预测功能.该方法首先引入Boruta-SHAP模块,利用XgBoost和SHAP分析方法进行特征选择,从给定的特征集中识别出与金融时间序列预测任务相关的重要特征,并解释这些特征对预测的影响.其次,利用Transformer结构和自注意力机制,改进为Finformer模块,将长序列金融数据分解为趋势、周期和残差成分,结合稀疏自注意力机制.在多个真实金融数据集上进行了实验评估.实验结果显示,BSFinformer对金融产品的价格预测表现出优异的性能,与其他预测方法相比,能准确捕捉长期趋势和周期性来实现高质量的预测.具体地,和传统的Transformer模型相比,在三个实验数据集上,BSFinformer的均方误差分别降低了52%,16%和19%,平均绝对误差分别降低了34%,25%和11%,为金融数据的长期时间序列预测提供了一种有效的解决方案.
关键词
特征选择
Boruta-SHAP
长时间序列
finformer
金融数据预测
Keywords
feature selection
Boruta SHAP
long time series
finformer
financial data prediction
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BSFinformer模型的金融数据特征选择及预测
朱晓彤
林培光
孙玫
王倩
李金玉
王杰茹
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部