In recent years,the demand for biometric-based human recog-nition methods has drastically increased to meet the privacy and security requirements.Palm prints,palm veins,finger veins,fingerprints,hand veins and other a...In recent years,the demand for biometric-based human recog-nition methods has drastically increased to meet the privacy and security requirements.Palm prints,palm veins,finger veins,fingerprints,hand veins and other anatomic and behavioral features are utilized in the development of different biometric recognition techniques.Amongst the available biometric recognition techniques,Finger Vein Recognition(FVR)is a general technique that analyzes the patterns of finger veins to authenticate the individuals.Deep Learning(DL)-based techniques have gained immense attention in the recent years,since it accomplishes excellent outcomes in various challenging domains such as computer vision,speech detection and Natural Language Processing(NLP).This technique is a natural fit to overcome the ever-increasing biomet-ric detection problems and cell phone authentication issues in airport security techniques.The current study presents an Automated Biometric Finger Vein Recognition using Evolutionary Algorithm with Deep Learning(ABFVR-EADL)model.The presented ABFVR-EADL model aims to accomplish bio-metric recognition using the patterns of the finger veins.Initially,the presented ABFVR-EADL model employs the histogram equalization technique to pre-process the input images.For feature extraction,the Salp Swarm Algorithm(SSA)with Densely-connected Networks(DenseNet-201)model is exploited,showing the proposed method’s novelty.Finally,the Deep-Stacked Denoising Autoencoder(DSAE)is utilized for biometric recognition.The proposed ABFVR-EADL method was experimentally validated using the benchmark databases,and the outcomes confirmed the productive performance of the proposed ABFVR-EADL model over other DL models.展开更多
由于指静脉图像含有大量弯曲纹理特征,针对传统的Gabor滤波器具有多尺度与多方向特征,但在提取图像弯曲纹理信息能力不足,提出了一种基于深度学习与改进Gabor特征融合的指静脉识别算法。首先对传统Gabor滤波器进行改进,使其具有曲率响...由于指静脉图像含有大量弯曲纹理特征,针对传统的Gabor滤波器具有多尺度与多方向特征,但在提取图像弯曲纹理信息能力不足,提出了一种基于深度学习与改进Gabor特征融合的指静脉识别算法。首先对传统Gabor滤波器进行改进,使其具有曲率响应能力,然后使用均匀LBP算子进一步处理得到融合特征,最后将融合特征信息输入到深度信念网络(Deep Belief Network,DBN)进行静脉图像识别,实验中针对预训练时间过长,使用修正线性单元变体(Lea Ky Re LU)改进RBM,通过实验测试表明,上述算法准确率明显优于其它指静脉识别算法。展开更多
Finger vein recognition is a biometric technique which identifies individuals using their unique finger vein patterns. It is reported to have a high accuracy and rapid processing speed. In addition, it is impossible t...Finger vein recognition is a biometric technique which identifies individuals using their unique finger vein patterns. It is reported to have a high accuracy and rapid processing speed. In addition, it is impossible to steal a vein pattern located inside the finger. We propose a new identification method of finger vascular patterns using a weighted local binary pattern (LBP) and support vector machine (SVM). This research is novel in the following three ways. First, holistic codes are extracted through the LBP method without using a vein detection procedure. This reduces the processing time and the complexities in detecting finger vein patterns. Second, we classify the local areas from which the LBP codes are extracted into three categories based on the SVM classifier: local areas that include a large amount (LA), a medium amount (MA), and a small amount (SA) of vein patterns. Third, different weights are assigned to the extracted LBP code according to the local area type (LA, MA, and SA) from which the LBP codes were extracted. The optimal weights are determined empirically in terms of the accuracy of the finger vein recognition. Experimental results show that our equal error rate (EER) is significantly lower compared to that without the proposed method or using a conventional method.展开更多
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project,under Grant No.KEP-3-120-42.
文摘In recent years,the demand for biometric-based human recog-nition methods has drastically increased to meet the privacy and security requirements.Palm prints,palm veins,finger veins,fingerprints,hand veins and other anatomic and behavioral features are utilized in the development of different biometric recognition techniques.Amongst the available biometric recognition techniques,Finger Vein Recognition(FVR)is a general technique that analyzes the patterns of finger veins to authenticate the individuals.Deep Learning(DL)-based techniques have gained immense attention in the recent years,since it accomplishes excellent outcomes in various challenging domains such as computer vision,speech detection and Natural Language Processing(NLP).This technique is a natural fit to overcome the ever-increasing biomet-ric detection problems and cell phone authentication issues in airport security techniques.The current study presents an Automated Biometric Finger Vein Recognition using Evolutionary Algorithm with Deep Learning(ABFVR-EADL)model.The presented ABFVR-EADL model aims to accomplish bio-metric recognition using the patterns of the finger veins.Initially,the presented ABFVR-EADL model employs the histogram equalization technique to pre-process the input images.For feature extraction,the Salp Swarm Algorithm(SSA)with Densely-connected Networks(DenseNet-201)model is exploited,showing the proposed method’s novelty.Finally,the Deep-Stacked Denoising Autoencoder(DSAE)is utilized for biometric recognition.The proposed ABFVR-EADL method was experimentally validated using the benchmark databases,and the outcomes confirmed the productive performance of the proposed ABFVR-EADL model over other DL models.
文摘由于指静脉图像含有大量弯曲纹理特征,针对传统的Gabor滤波器具有多尺度与多方向特征,但在提取图像弯曲纹理信息能力不足,提出了一种基于深度学习与改进Gabor特征融合的指静脉识别算法。首先对传统Gabor滤波器进行改进,使其具有曲率响应能力,然后使用均匀LBP算子进一步处理得到融合特征,最后将融合特征信息输入到深度信念网络(Deep Belief Network,DBN)进行静脉图像识别,实验中针对预训练时间过长,使用修正线性单元变体(Lea Ky Re LU)改进RBM,通过实验测试表明,上述算法准确率明显优于其它指静脉识别算法。
基金Project(No.R112002105070020(2010))supported by the National Research Foundation of Korea(NRF) through the Biometrics Engi-neering Research Center(BERC)at Yonsei University
文摘Finger vein recognition is a biometric technique which identifies individuals using their unique finger vein patterns. It is reported to have a high accuracy and rapid processing speed. In addition, it is impossible to steal a vein pattern located inside the finger. We propose a new identification method of finger vascular patterns using a weighted local binary pattern (LBP) and support vector machine (SVM). This research is novel in the following three ways. First, holistic codes are extracted through the LBP method without using a vein detection procedure. This reduces the processing time and the complexities in detecting finger vein patterns. Second, we classify the local areas from which the LBP codes are extracted into three categories based on the SVM classifier: local areas that include a large amount (LA), a medium amount (MA), and a small amount (SA) of vein patterns. Third, different weights are assigned to the extracted LBP code according to the local area type (LA, MA, and SA) from which the LBP codes were extracted. The optimal weights are determined empirically in terms of the accuracy of the finger vein recognition. Experimental results show that our equal error rate (EER) is significantly lower compared to that without the proposed method or using a conventional method.