煤矿井下环境复杂多变,对人员精确定位技术挑战很大。目前矿井巷道中采用基于接收信号强度指示RSSI(Received Signal Strength Indication)的位置指纹定位算法存在定位目标漂移、抖动和定位精度不高等问题。提出一种改进的指纹定位匹配...煤矿井下环境复杂多变,对人员精确定位技术挑战很大。目前矿井巷道中采用基于接收信号强度指示RSSI(Received Signal Strength Indication)的位置指纹定位算法存在定位目标漂移、抖动和定位精度不高等问题。提出一种改进的指纹定位匹配算法,该算法将K邻近算法和最短历史路径匹配法联合并利用速度限定位置估计补偿算法对定位精度进行修正。利用在煤矿巷道中的实测数据,对改进的匹配算法进行了验证与误差分析。仿真结果表明,改进后的算法能够提高定位精度,满足矿井人员定位、目标跟踪和目标轨迹查询等要求。展开更多
WiFi室内定位已被广泛研究,并且提出了许多解决方案,其中以接收信号强度(received signal strength,RSS)作为位置指纹的加权K-最近邻(weighted K-Nearest neighbor,WKNN)算法是目前使用最广泛的位置指纹算法之一。由于WKNN算法通常采用...WiFi室内定位已被广泛研究,并且提出了许多解决方案,其中以接收信号强度(received signal strength,RSS)作为位置指纹的加权K-最近邻(weighted K-Nearest neighbor,WKNN)算法是目前使用最广泛的位置指纹算法之一。由于WKNN算法通常采用固定的K值,其定位精度在实际使用时具有局限性。尽管动态K的方案被提出,但是由于引入了新的不确定性参数,因此,并未真正解决问题。针对这个问题,提出了一种自适应动态K的WKNN室内定位方法。提出的算法的K值自适应调整仅依赖于离线和在线数据,即可以不引入新的不确定参数。在这个前提下,提出的算法采用"多雷达搜索策略"的方式自适应选择近邻数K值进行在线位置估计。在真实环境中采样了大量数据进行了试验。试验结果表明,提出的算法可根据在线情况自适应调整K值,获得了较好的定位结果。展开更多
与室外定位技术相比(如GPS),基于无线局域网(Wireless Area Network)的定位更适用于室内环境。两种基于接收信号强度(RSSI,Received Signal Strength Indication)的定位方法即位置指纹法和信号传播模型法广泛用于室内定位的研究。使用...与室外定位技术相比(如GPS),基于无线局域网(Wireless Area Network)的定位更适用于室内环境。两种基于接收信号强度(RSSI,Received Signal Strength Indication)的定位方法即位置指纹法和信号传播模型法广泛用于室内定位的研究。使用边界盒算法和改进的二分范围搜索算法将两种室内定位方法相结合,提出了一种改进的基于RSSI的定位方法。提出的方法根据指纹数据库中样本的横纵坐标对其进行预处理,同时使用改进的线性二分范围搜索算法降低指纹数据库中的样本数,进而提高实时定位过程的效率。最大化位置指纹维度,并添加时间维,同时通过实验数据阐明所提出的方法可提高用户位置估算的精确度。展开更多
文摘煤矿井下环境复杂多变,对人员精确定位技术挑战很大。目前矿井巷道中采用基于接收信号强度指示RSSI(Received Signal Strength Indication)的位置指纹定位算法存在定位目标漂移、抖动和定位精度不高等问题。提出一种改进的指纹定位匹配算法,该算法将K邻近算法和最短历史路径匹配法联合并利用速度限定位置估计补偿算法对定位精度进行修正。利用在煤矿巷道中的实测数据,对改进的匹配算法进行了验证与误差分析。仿真结果表明,改进后的算法能够提高定位精度,满足矿井人员定位、目标跟踪和目标轨迹查询等要求。
文摘WiFi室内定位已被广泛研究,并且提出了许多解决方案,其中以接收信号强度(received signal strength,RSS)作为位置指纹的加权K-最近邻(weighted K-Nearest neighbor,WKNN)算法是目前使用最广泛的位置指纹算法之一。由于WKNN算法通常采用固定的K值,其定位精度在实际使用时具有局限性。尽管动态K的方案被提出,但是由于引入了新的不确定性参数,因此,并未真正解决问题。针对这个问题,提出了一种自适应动态K的WKNN室内定位方法。提出的算法的K值自适应调整仅依赖于离线和在线数据,即可以不引入新的不确定参数。在这个前提下,提出的算法采用"多雷达搜索策略"的方式自适应选择近邻数K值进行在线位置估计。在真实环境中采样了大量数据进行了试验。试验结果表明,提出的算法可根据在线情况自适应调整K值,获得了较好的定位结果。
文摘与室外定位技术相比(如GPS),基于无线局域网(Wireless Area Network)的定位更适用于室内环境。两种基于接收信号强度(RSSI,Received Signal Strength Indication)的定位方法即位置指纹法和信号传播模型法广泛用于室内定位的研究。使用边界盒算法和改进的二分范围搜索算法将两种室内定位方法相结合,提出了一种改进的基于RSSI的定位方法。提出的方法根据指纹数据库中样本的横纵坐标对其进行预处理,同时使用改进的线性二分范围搜索算法降低指纹数据库中的样本数,进而提高实时定位过程的效率。最大化位置指纹维度,并添加时间维,同时通过实验数据阐明所提出的方法可提高用户位置估算的精确度。