This study assessed the sex-based relationship and prediction pattern between fingerprint patterns,ridge counts,and learning disability(LD).This cross-sectional study recruited 300 students(150 LD and 150 non-LD)aged ...This study assessed the sex-based relationship and prediction pattern between fingerprint patterns,ridge counts,and learning disability(LD).This cross-sectional study recruited 300 students(150 LD and 150 non-LD)aged between 3 and 29 years.The fingerprint patterns(arch,whorl,ulnar loop,and radial loop)and the ridge count:total finger ridge count(TFRC),absolute ridge count(ARC),ulnar ridge count(URC),and radial ridge count(RRC)were accessed.Students with LD showed a significantly higher whorl and a significantly lower ulnar loop than students without LD.There is a significant association of whorl pattern in the first right finger of subjects with LD compared to non-LD counterparts.TFRC,ARC,and URC were significantly higher in females with LD than non-LD females(P=0.01,0.03,and 0.001).Males with LD showed significantly lower TFRC,RRC,and URC counts than the non-LD males(P=0.02,0.01,and 0.001).TFRC can predict LD in males(odds ratio[OR]=1.010,P=0.032)and females(OR=0.993,P=0.012).Fingerprint pattern and ridge counts are sexually dimorphic in subjects with or without LD.TFRC and whorl fingerprint patterns may be vital predictive and screening tools for LD in males and females.展开更多
In this paper, the feasibility and advantages of employing high performance liquid chromatographic (HPLC) fingerprints combined with pattern recognition techniques for quality control of Shenmai injection were inves...In this paper, the feasibility and advantages of employing high performance liquid chromatographic (HPLC) fingerprints combined with pattern recognition techniques for quality control of Shenmai injection were investigated and demonstrated. The Similarity Evaluation System was employed to evaluate the similarities of samples of Shenmai injection, and the HPLC generated chromatographic data were analyzed using hierarchical clustering analysis (HCA) and soft independent modeling of class analogy (SIMCA). Consistent results were obtained to show that the authentic samples and the blended samples were successfully classified by SIMCA, which could be applied to accurate discrimination and quality control of Shenmai injection. Furthermore, samples could also be grouped in accordance with manufacturers. Our results revealed that the developed method has potential perspective for the original discrimination and quality control of Shenmai injection.展开更多
Fingerprint image is a typical non-restraint image that has some uncertainty, which makes it difficult to perform identification using classical approach. Therefore, fuzzy pattern recognition is applied to match indiv...Fingerprint image is a typical non-restraint image that has some uncertainty, which makes it difficult to perform identification using classical approach. Therefore, fuzzy pattern recognition is applied to match individual query by searching the entire template database. The fuzzy maximum subordinate principle is used to solve shift matching. Through experimenting and analyzing, the approximate principle fuzzy method is employed by selecting fuzzy characteristics and determining the similarity function to achieve the further accuracy. Theoretical and experimental results show this approach is effective and reasonable.展开更多
Five-electrode configurations were designed to simulate the distribution inhomogeneity of electric field intensities in the air-insulating medium, and the characteristic data waveforms of partial discharge generated b...Five-electrode configurations were designed to simulate the distribution inhomogeneity of electric field intensities in the air-insulating medium, and the characteristic data waveforms of partial discharge generated by different electrode configurations under the excitation of power frequency AC voltage were carefully collected in this paper. Furthermore, the feature vectors of the corresponding fingerprint, contained in partial discharge data, were extracted by rigorous mathematical algorithms, and the artificial neural network was employed to realize the pattern recognition of partial discharge caused by the inhomogeneity of electric field intensity with different electrode configurations. The results indicate that the J<sub>4</sub> value in the space of 7 feature quantities is 1905.6, and the recognition rate is 100% when the hidden layer neuron of the network is 19. However, the J<sub>5</sub> value of 9 feature quantities is 1589.9, and the purpose of recognition has been achieved when the number of hidden layer neurons of the network is 6. Increasing the number of hidden layer neurons will only waste computing resources. Of course, PD information collection mode, feature quantity selection, optimal feature space composition, network structure and classification algorithm are the key to realizing PD fault intelligence identification.展开更多
In this paper, the feasibility and advantages of employing high performance liquid chromatographic-photodiode array detection (HPLC-DAD) fingerprint combined with chemical pattern recognition for quality consistency e...In this paper, the feasibility and advantages of employing high performance liquid chromatographic-photodiode array detection (HPLC-DAD) fingerprint combined with chemical pattern recognition for quality consistency evaluation of widely used Rhizoma rodgersiae (RR) were investigated and demonstrated for the first time. The Similarity Evaluation System was employed to evaluate the similarities of 10 batches of RR sample;moreover, hierarchical clustering analysis (HCA) and principal component analysis (PCA) were also successfully applied to discriminate RR samples of different regions and seasons. Our results indicated that the seasonal variation had some influence on the chemical fingerprints of this herbal drug. This approach allowed the discrimination of RR samples from different sources. The current study demonstrated that fingerprint profiling coupled with chemical pattern recognition offered a reliable and efficient way to comprehensively assess the quality consistency of the tested samples.展开更多
Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede...Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede to an automated fingerprint system for E-learning. The idea is to apply back propagation algorithm on a multilayer perceptron during the training stage. One of the advantages of this technique is the use of a hidden layer which allows the network to make comparison by calculating probabilities on template which are invariant to translation and rotation. Results come both from the NIST special database 4 and a local database, and show that a proposed method gives good results in some cases.展开更多
By gas chromatogram, six crude oils fingerprinting distributed in four oilfields and four oil platforms were analyzed and the corre- sponding normal paraffin hydrocarbon ( including pristane and phytane) concentrati...By gas chromatogram, six crude oils fingerprinting distributed in four oilfields and four oil platforms were analyzed and the corre- sponding normal paraffin hydrocarbon ( including pristane and phytane) concentration was obtained by the internal standard methed. The normal paraffin hydrocarbon distribution patterns of six crude oils were built and compared. The cluster analysis on the normal paraffin hydrocarbon concentration was conducted for classification and some ratios of oils were used for oils comparison. The results indicated: there was a clear difference within different crude oils in different oil fields and a small difference between the crude oils in the same oil platform. The normal paraffin hydrocarbon distribution pattern and ratios, as well as the cluster analysis on the nomad paraffin hydrocarbon concentration can have a better differentiation result for the crude oils with small difference than the original gas chromatogram.展开更多
The graph can contain huge amount of data. It is heavily used for pattern recognition and matching tasks like symbol recognition, information retrieval, data mining etc. In all these applications, the objects or under...The graph can contain huge amount of data. It is heavily used for pattern recognition and matching tasks like symbol recognition, information retrieval, data mining etc. In all these applications, the objects or underlying data are represented in the form of graph and graph based matching is performed. The conventional algorithms of graph matching have higher complexity. This is because the most of the applications have large number of sub graphs and the matching of these sub graphs becomes computationally expensive. In this paper, we propose a graph based novel algorithm for fingerprint recognition. In our work we perform graph based clustering which reduces the computational complexity heavily. In our algorithm, we exploit structural features of the fingerprint for K-means clustering of the database. The proposed algorithm is evaluated using realtime fingerprint database and the simulation results show that our algorithm outperforms the existing algorithm for the same task.展开更多
Faultless authentication of individuals by fingerprints results in high false rejections rate for rigorously built systems. Indeed, the authors prefer that the system erroneously reject a pattern when it does not meet...Faultless authentication of individuals by fingerprints results in high false rejections rate for rigorously built systems. Indeed, the authors prefer that the system erroneously reject a pattern when it does not meet a number of predetermined correspondence criteria. In this work, after discussing existing techniques, we propose a new algorithm to reduce the false rejection rate during the authentication-using fingerprint. This algorithm extracts the minutiae of the fingerprint with their relative orientations and classifies them according to the different classes already established;then, make the correspondence between two templates by simple probabilities calculations from a deep neural network. The merging of these operations provides very promising results both on the NIST4 international data reference and on the SOCFing database.展开更多
文摘This study assessed the sex-based relationship and prediction pattern between fingerprint patterns,ridge counts,and learning disability(LD).This cross-sectional study recruited 300 students(150 LD and 150 non-LD)aged between 3 and 29 years.The fingerprint patterns(arch,whorl,ulnar loop,and radial loop)and the ridge count:total finger ridge count(TFRC),absolute ridge count(ARC),ulnar ridge count(URC),and radial ridge count(RRC)were accessed.Students with LD showed a significantly higher whorl and a significantly lower ulnar loop than students without LD.There is a significant association of whorl pattern in the first right finger of subjects with LD compared to non-LD counterparts.TFRC,ARC,and URC were significantly higher in females with LD than non-LD females(P=0.01,0.03,and 0.001).Males with LD showed significantly lower TFRC,RRC,and URC counts than the non-LD males(P=0.02,0.01,and 0.001).TFRC can predict LD in males(odds ratio[OR]=1.010,P=0.032)and females(OR=0.993,P=0.012).Fingerprint pattern and ridge counts are sexually dimorphic in subjects with or without LD.TFRC and whorl fingerprint patterns may be vital predictive and screening tools for LD in males and females.
基金supported by National Key Scientific Project for New Drug Discovery and Development of China (Grant no. 2009ZX09301-012)
文摘In this paper, the feasibility and advantages of employing high performance liquid chromatographic (HPLC) fingerprints combined with pattern recognition techniques for quality control of Shenmai injection were investigated and demonstrated. The Similarity Evaluation System was employed to evaluate the similarities of samples of Shenmai injection, and the HPLC generated chromatographic data were analyzed using hierarchical clustering analysis (HCA) and soft independent modeling of class analogy (SIMCA). Consistent results were obtained to show that the authentic samples and the blended samples were successfully classified by SIMCA, which could be applied to accurate discrimination and quality control of Shenmai injection. Furthermore, samples could also be grouped in accordance with manufacturers. Our results revealed that the developed method has potential perspective for the original discrimination and quality control of Shenmai injection.
文摘Fingerprint image is a typical non-restraint image that has some uncertainty, which makes it difficult to perform identification using classical approach. Therefore, fuzzy pattern recognition is applied to match individual query by searching the entire template database. The fuzzy maximum subordinate principle is used to solve shift matching. Through experimenting and analyzing, the approximate principle fuzzy method is employed by selecting fuzzy characteristics and determining the similarity function to achieve the further accuracy. Theoretical and experimental results show this approach is effective and reasonable.
文摘Five-electrode configurations were designed to simulate the distribution inhomogeneity of electric field intensities in the air-insulating medium, and the characteristic data waveforms of partial discharge generated by different electrode configurations under the excitation of power frequency AC voltage were carefully collected in this paper. Furthermore, the feature vectors of the corresponding fingerprint, contained in partial discharge data, were extracted by rigorous mathematical algorithms, and the artificial neural network was employed to realize the pattern recognition of partial discharge caused by the inhomogeneity of electric field intensity with different electrode configurations. The results indicate that the J<sub>4</sub> value in the space of 7 feature quantities is 1905.6, and the recognition rate is 100% when the hidden layer neuron of the network is 19. However, the J<sub>5</sub> value of 9 feature quantities is 1589.9, and the purpose of recognition has been achieved when the number of hidden layer neurons of the network is 6. Increasing the number of hidden layer neurons will only waste computing resources. Of course, PD information collection mode, feature quantity selection, optimal feature space composition, network structure and classification algorithm are the key to realizing PD fault intelligence identification.
文摘In this paper, the feasibility and advantages of employing high performance liquid chromatographic-photodiode array detection (HPLC-DAD) fingerprint combined with chemical pattern recognition for quality consistency evaluation of widely used Rhizoma rodgersiae (RR) were investigated and demonstrated for the first time. The Similarity Evaluation System was employed to evaluate the similarities of 10 batches of RR sample;moreover, hierarchical clustering analysis (HCA) and principal component analysis (PCA) were also successfully applied to discriminate RR samples of different regions and seasons. Our results indicated that the seasonal variation had some influence on the chemical fingerprints of this herbal drug. This approach allowed the discrimination of RR samples from different sources. The current study demonstrated that fingerprint profiling coupled with chemical pattern recognition offered a reliable and efficient way to comprehensively assess the quality consistency of the tested samples.
文摘Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede to an automated fingerprint system for E-learning. The idea is to apply back propagation algorithm on a multilayer perceptron during the training stage. One of the advantages of this technique is the use of a hidden layer which allows the network to make comparison by calculating probabilities on template which are invariant to translation and rotation. Results come both from the NIST special database 4 and a local database, and show that a proposed method gives good results in some cases.
基金the National Natural Science Foundation of China under contract No.49976027 the Important Topic of Scientific Research of the State 0ceanic Administration, China, on the construction system of oil fingerprinting database and the key technology (from 2004 to 2005 ).
文摘By gas chromatogram, six crude oils fingerprinting distributed in four oilfields and four oil platforms were analyzed and the corre- sponding normal paraffin hydrocarbon ( including pristane and phytane) concentration was obtained by the internal standard methed. The normal paraffin hydrocarbon distribution patterns of six crude oils were built and compared. The cluster analysis on the normal paraffin hydrocarbon concentration was conducted for classification and some ratios of oils were used for oils comparison. The results indicated: there was a clear difference within different crude oils in different oil fields and a small difference between the crude oils in the same oil platform. The normal paraffin hydrocarbon distribution pattern and ratios, as well as the cluster analysis on the nomad paraffin hydrocarbon concentration can have a better differentiation result for the crude oils with small difference than the original gas chromatogram.
文摘The graph can contain huge amount of data. It is heavily used for pattern recognition and matching tasks like symbol recognition, information retrieval, data mining etc. In all these applications, the objects or underlying data are represented in the form of graph and graph based matching is performed. The conventional algorithms of graph matching have higher complexity. This is because the most of the applications have large number of sub graphs and the matching of these sub graphs becomes computationally expensive. In this paper, we propose a graph based novel algorithm for fingerprint recognition. In our work we perform graph based clustering which reduces the computational complexity heavily. In our algorithm, we exploit structural features of the fingerprint for K-means clustering of the database. The proposed algorithm is evaluated using realtime fingerprint database and the simulation results show that our algorithm outperforms the existing algorithm for the same task.
文摘Faultless authentication of individuals by fingerprints results in high false rejections rate for rigorously built systems. Indeed, the authors prefer that the system erroneously reject a pattern when it does not meet a number of predetermined correspondence criteria. In this work, after discussing existing techniques, we propose a new algorithm to reduce the false rejection rate during the authentication-using fingerprint. This algorithm extracts the minutiae of the fingerprint with their relative orientations and classifies them according to the different classes already established;then, make the correspondence between two templates by simple probabilities calculations from a deep neural network. The merging of these operations provides very promising results both on the NIST4 international data reference and on the SOCFing database.