期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:2
1
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy Hot deformation Microstructure evolution Constitutive model finite element simulation
下载PDF
Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter
2
作者 Shijing GAO Lele ZHANG +2 位作者 Jinxi LIU Guoquan NIE Weiqiu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期649-662,共14页
This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and ... This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated. 展开更多
关键词 piezoelectric semiconductor(PSC) insulating indenter electromechanical response singular integral equation finite element simulation
下载PDF
Safety Length Simulation of Natural Gas Pipeline Subjected to Transverse Landslide 被引量:1
3
作者 Guizhi Li Peng Zhang +2 位作者 Zhixiang Li Zunhai Ke Gengxin Wu 《World Journal of Engineering and Technology》 2023年第1期67-80,共14页
The safety of natural gas pipeline is often severely threatened by the transverse landslide. At home and abroad, it is the first time to study the safe length of the pipeline when affected by landslide, and take ... The safety of natural gas pipeline is often severely threatened by the transverse landslide. At home and abroad, it is the first time to study the safe length of the pipeline when affected by landslide, and take the safe length of the pipeline as an engineering practical index. Therefore, it is of great significance to study the influence of transverse landslide affecting the safety of natural gas pipeline when a certain length of pipeline is thrusted, and to establish practical index and simulation method for prediction and prevention of the landslide hazards to gas pipeline. Based on the current research results, this study could be divided into three steps: First of all, with the help of ANSYS finite element software, the model of transverse landslide acting on the gas pipeline can be set up, then the length value of gas pipeline safely withstanding transverse landslide can be calculated;Secondly, using the strength reduction method, which is commonly used in the research of landslide stability, can establish three-dimensional model of the landslide and pipes in the ABAQUS finite element software, next, under the same landslide pushed length, the calculation results will be obtained;Finally, to draw reliable conclusions, all calculated results of the former two methods will be linked to synthetically and comparatively analyze, then the length value of common X80 gas pipeline safely bearing transverse landslide can be got. All results can provide some references for engineering and design. 展开更多
关键词 Transverse Landslide Gas Pipeline finite elements simulation Strength Reduction Method
下载PDF
Finite element simulation of inertia friction welding of superalloy bars 被引量:4
4
作者 王非凡 李文亚 +1 位作者 代野 李京龙 《China Welding》 EI CAS 2012年第1期13-17,共5页
A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigat... A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigated by adopting an innovative heat generation model and the flywheel rotational speed measured via the experiment. The simulated evolution of axial shortening shows a good agreement with the experiment. In addition, extensive .strain concentration presents in the interface and flash, and the largest ,strain exists near the flash root. Moreover, an intere.sting thermal reflux phenomenon during the cooling stage was found. 展开更多
关键词 inertia friclion welding finite element simulation heat generation thermal reflux
下载PDF
RESEARCH ON THE SELECTION OF FRICTION MODELS IN THE FINITE ELEMENT SIMULATION OF WARM EXTRUSION 被引量:3
5
作者 X.B.Lin H.S.Xiao Z.L.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第2期90-96,共7页
During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors whi... During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last. 展开更多
关键词 friction model warm extrusion finite element simulation
下载PDF
Finite element simulation on the deep drawing of titanium thin-walled surface part 被引量:2
6
作者 GAO Enzhi, LI Hongwei, KOU Hongchao, CHANG Hui, LI Jinshan, and ZHOU Lian State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第1期108-113,共6页
The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design w... The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design was adopted to determine the significance of processing parameters, such as die radius, blank holder force, and friction coefficient, on the forming process. The distributions of thickness and equivalent plastic strain of the drawn part were evaluated. The results show that die radius has a relative major influence on the deep drawing process, followed by friction coefficient and blank holder force. 展开更多
关键词 deep drawing titanium alloy finite element simulation orthogonal experiment processing parameters
下载PDF
THREE-DIMENSIONAL FINITE ELEMENT SIMULATION OF TOTAL KNEE JOINT IN GAIT CYCLE 被引量:2
7
作者 Yuan Guo Xushu Zhang Weiyi Chen 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期347-351,共5页
Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main car... Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle. 展开更多
关键词 knee joint finite element simulation contact pressure BIOMECHANICS
下载PDF
FINITE ELEMENT MODEL AND SIMULATION OF ROTARY FORGING OF A DISC 被引量:1
8
作者 G.Liu, S. J. Yuan, Z. R. Wang and T. Xie 1) Harbin Institute of Technology, Harbin 150001, China 2) Harbin Huasheng Coorpration, Harbin 150001, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期470-475,共6页
The rotary forging process of a disc is simulated by 3-D finite element method.The motion of the rotary the is described as the combination of a revolution round the machine axis and a spin round the rotary die axis... The rotary forging process of a disc is simulated by 3-D finite element method.The motion of the rotary the is described as the combination of a revolution round the machine axis and a spin round the rotary die axis. Therefore, the workpiece can be loaded and unloaded partly and cyclically by the cone surface of the rotary the continuously, according with the practical rotary forging process. From the siumulation rasults, the causes of center-thinning during rotary forging of discs are that the locally loading of rotary die made the workpiece center get high radial and tangential tensile stresses, and then the shortening in axial direction and the elongating in tangential and radial direction occur continuous- ly. 展开更多
关键词 finite element simulation rotary forging disc center-thinning
下载PDF
Finite element simulation for mechanical response of surface mounted solder joints under different temperature cycling 被引量:1
9
作者 马鑫 钱乙余 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期471-474,共4页
Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of... Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test. 展开更多
关键词 finite element simulation surface mounted solder joint thermal cycling mechanical response
下载PDF
DEFORMATION ANALYSIS OF SHEET METAL SINGLE-POINT INCREMENTAL FORMING BY FINITE ELEMENT METHOD SIMULATION 被引量:3
10
作者 MA Linwei MO Jianhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期31-35,共5页
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a... Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger. 展开更多
关键词 Sheet metal incremental forming Deformation finite element method(FEM) Numerical simulation
下载PDF
Finite element simulation of welded thin-walled stainless steel container based on SYSWELD
11
作者 何晓祥 俞建荣 +2 位作者 郭云龙 杨德宇 王岚 《China Welding》 EI CAS 2012年第2期23-27,共5页
The temperature field and stress fields of 18 - 8 stainless steel container structure were computed during and after tungsten inert gas (TIG) arc welding based on the SYSWELD software. The convection, radiation and ... The temperature field and stress fields of 18 - 8 stainless steel container structure were computed during and after tungsten inert gas (TIG) arc welding based on the SYSWELD software. The convection, radiation and conduction were all considered during the simulation process as well as temperature-dependent material properties. The results show that the peak temperature occurs on the heat source location. Steep temperature gradients are observed ahead of the heat source. Axial tensile stress and hoop compressive stress are observed in the weld seam between cylinder and head. Axial compressive stress and hoop tensile stress are observed near the weld seam between cylinder and heads. Axial compressive stress and hoop tensile stress are observed in the axial weld seam of cylinder. Axial tensile stress and hoop compressive stress are observed near the axial weld seam of cylinder. The aim of the above research is to provide a basic theory and some calculation methods for the thin-walled container welding technology so that the failures of these structures in service due to residual stresses may be minimized. 展开更多
关键词 numerical simulation thin-walled containers finite element simulation temperature field stress field
下载PDF
Finite Element Simulation of In-Stent Restenosis with Tissue Growth Model
12
作者 Jie Cheng Lucy T. Zhang 《Journal of Biomedical Science and Engineering》 2021年第2期33-47,共15页
In this study, a finite element simulation of in-stent restenosis (ISR) is conducted to simulate the deployment and expansion of a stent in an occluded artery with a contact model and a mechanics-based growth model. A... In this study, a finite element simulation of in-stent restenosis (ISR) is conducted to simulate the deployment and expansion of a stent in an occluded artery with a contact model and a mechanics-based growth model. A tissue growth model based on the multiplicative decomposition of deformation is applied to investigate the growth of the plaque and artery wall upon the stent’s implantation. Due to the high stresses at the contact points between the stent struts and the tissue, further tissue injury or restenosis is observed. The simulation results show that after the stent deployment, the von Mises stress is significantly larger in the plaque compared to the artery wall, especially in the region that is in contact with the stent. However, the growth of the plaque and artery tends to even out the stress concentration over time. The tissue growth is found to be more significant near the inner wall than the outer layer. A 0.77 mm restenosis is predicted, which agrees with published clinical observations. The features of the artery growth are carefully analyzed, and the underlying mechanism is discussed. This study is the first attempt to apply finite element analysis to artery restenosis, which establishes a framework for predicting ISR’s occurrence and severity. The results also provide insights into understanding the underlying mechanism of in-stent restenosis. 展开更多
关键词 STENTS In-Stent Restenosis Tissue Growth finite Element simulation Growth Model
下载PDF
Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation
13
作者 Ming-qiang Zhan Bo Chen Zhong-ru Wu 《Water Science and Engineering》 EI CAS CSCD 2023年第4期408-418,共11页
The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it diffi... The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams. 展开更多
关键词 Deformation warning index Structural health monitoring finite element simulation REINFORCEMENT Multiple-arch dam Parameter inverse analysis
下载PDF
Numerical simulation of the mechanical behavior of superconducting tape in conductor on round core cable using the cohesive zone model
14
作者 Shengyi TANG Xubin PENG Huadong YONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1511-1532,共22页
Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers wit... Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations. 展开更多
关键词 high temperature superconducting(HTS)tape superconducting cable finite element simulation cohesive zone model(CZM) DAMAGE
下载PDF
Simulation Study of CMUT for Pressure Sensing Applications
15
作者 Yan Zhou Jie Liu +1 位作者 Xin Lu Quanfang Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第3期22-31,共10页
Capacitive micromechanical ultrasonic transducers(CMUTs)have been widely studied because they can be used as substitutes for piezoelectric ultrasonic transducers in imaging applications.However,it is unclear whether a... Capacitive micromechanical ultrasonic transducers(CMUTs)have been widely studied because they can be used as substitutes for piezoelectric ultrasonic transducers in imaging applications.However,it is unclear whether and how CMUTs can be developed for sensors incorporating other functions.For instance,researchers have proposed the use of CMUTs for pressure sensing,but fundamental and practical application issues remain unsolved.This study explored ways in which a pressure sensor can be properly developed based on a CMUT prototype using a simulation approach.A three-dimensional finite element model of CMUTs was designed using the COMSOL Multiphysics software by combining the working principle of CMUTs with pressure sensing characteristics in which the resonance frequency of the CMUT cell shifts accordingly when it is subjected to an external pressure.Simultaneously,when subjected to pressure,the CMUT membrane deforms,thus the pressure can be reflected by the change in the capacitance. 展开更多
关键词 capacitive micromechanical ultrasonic transducers(CMUTs) pressure sensor collapsing voltage resonance frequency CAPACITANCE finite element multi-physics simulation
下载PDF
A Study on the Computer Numerical Simulation of Radial Keratotomy by Finite Element Method
16
《Chinese Journal of Biomedical Engineering(English Edition)》 1999年第4期120-121,共2页
关键词 simulation A Study on the Computer Numerical simulation of Radial Keratotomy by finite Element Method
下载PDF
Simulation research on collisions between highway corrugated beam guardrails and vehicles based on LS-DYNA
17
作者 Yongming He Yanan Wan +2 位作者 Kun Wei Jia Feng Cong Quan 《Digital Transportation and Safety》 2023年第1期52-66,共15页
To explore the safety of highway traffic operations,the vehicle state and guardrail deformation during highway guardrail collisions are simulated and analyzed.The vehicle-guardrail collision is simulated by finite ele... To explore the safety of highway traffic operations,the vehicle state and guardrail deformation during highway guardrail collisions are simulated and analyzed.The vehicle-guardrail collision is simulated by finite element software such as LS-DYNA and HyperMesh.The vehicle speed settings are 60,80,100 and 120 km/h,and the collision angles are 5°,10°,15°and 20°.The guardrail deformation,vehicle acceleration and energy changes under different collision speeds and angles are studied.The research results show that at the same collision speed,an increase in the collision angle causes more serious damage to the vehicle,a greater transverse displacement of the guardrail,and a greater range of car acceleration fluctuations.When the collision angle is the same,an increase in the collision speed causes greater lateral displacement of the guardrail,a greater vehicle acceleration fluctuation range,and more serious vehicle damage.The results of the study can provide a reference for demonstrating highway guardrail safety. 展开更多
关键词 Highway traffic Highway guardrail Traffic safety Vehicle-guardrail collision finite element simulation
下载PDF
Study on Dynamic Mechanical Behavior of Al-Mg-Si Alloy
18
作者 陶小旺 LIU Jibo +3 位作者 LIU Xianbin CHEN Jianbin WANG Yonggang 汪小锋 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期454-462,共9页
The dynamic mechanical behavior of Al-Mg-Si alloy was investigated under different strain rates by mechanical property and microstructure characterization,constitutive behavior analysis and numerical simulation in the... The dynamic mechanical behavior of Al-Mg-Si alloy was investigated under different strain rates by mechanical property and microstructure characterization,constitutive behavior analysis and numerical simulation in the present study.As the strain rate increases,the yield strength,ultimate tensile strength and elongation increase first,then remain almost constant,and finally increase.The alloy always exhibits a typical ductile fracture mode,not depending on the strain rate.However,as the strain rate increases,the number of dimples gradually increases.Tensile deformation can refine grains,however,the grain structure is slightly affected by the strain rate.An optimized Johnson-Cook constitutive equation was used to describe the mechanical behavior and obtained by fitting the true stress-strain curves.The parameter C was described by a function related to the strain rate.The fitting true stress-strain curves by the JC model agree very well with the experimental true stress-strain curves.The true stress-strain curves calculated by the finite element numerical simulation agree well with the experimental true stress-strain curves. 展开更多
关键词 Al-Mg-Si alloy strain rate mechanical property MICROSTRUCTURE Johnson-Cook model finite element simulation
下载PDF
Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load
19
作者 Zhengqing Zhou Zechen Du +6 位作者 Yulong Zhang Guili Yang Ruixiang Wang Yuzhe Liu Peize Zhang Yaxin Zhang Xiao Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期430-442,共13页
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde... As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response. 展开更多
关键词 Explosive load Q345 steel Micro defect finite element simulation Dynamic response Data fitting
下载PDF
Direct Pointwise Comparison of FE Predictions to StereoDIC Measurements:Developments and Validation Using Double Edge-Notched Tensile Specimen
20
作者 Troy Myers MichaelASutton +2 位作者 Hubert Schreier Alistair Tofts Sreehari Rajan Kattil 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1263-1298,共36页
To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is... To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process. 展开更多
关键词 StereoDIC spatial co-registration data transformation finite element simulations point-wise comparison of measurements and FEA predictions double edge notch specimen model validation
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部