期刊文献+
共找到306篇文章
< 1 2 16 >
每页显示 20 50 100
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
1
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites Multi-objective optimization finite element modeling Convolutional neural network
下载PDF
An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection 被引量:3
2
作者 Xiao-Lei Chu Xi-Zi Song +5 位作者 Yu-Ru Li Zi-Ren Wu Qi Li Qing-Wen Li Xiao-Song Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期683-688,共6页
Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ... Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ultrasound before percutaneous nerve stimulation can help prevent further injury to an already injured nerve.However,stimulation parameters have not been standardized.In this study,we constructed a multi-layer human forearm model using finite element modeling.Taking current density and activated function as optimization indicators,the optimal percutaneous nerve stimulation parameters were established.The optimal parameters were parallel placement located 3 cm apart with the injury site at the midpoint between the needles.To validate the efficacy of this regimen,we performed a randomized controlled trial in 23 patients with median nerve transection who underwent neurorrhaphy.Patients who received conventional rehabilitation combined with percutaneous electrical nerve stimulation experienced greater improvement in sensory function,motor function,and grip strength than those who received conventional rehabilitation combined with transcutaneous electrical nerve stimulation.These findings suggest that the percutaneous electrical nerve stimulation regimen established in this study can improve global median nerve function in patients with median nerve transection. 展开更多
关键词 finite element modeling median nerve transection nerve regeneration NEUROREHABILITATION percutaneous electrical nerve stimulation peripheral nerve injury randomized controlled trial
下载PDF
Torsional Response Analysis of Flexible Pipe Based on Theory and Finite Element Method 被引量:1
3
作者 LEI Qing-long ZHU Xiao-hua 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期190-203,共14页
As key components connecting offshore floating production platforms and subsea imports, offshore flexible pipes play significant roles in oil, natural gas, and water injection. It is found that torsional failure is on... As key components connecting offshore floating production platforms and subsea imports, offshore flexible pipes play significant roles in oil, natural gas, and water injection. It is found that torsional failure is one of the failure modes of flexible pipes during transportation and laying. In this paper, a theoretical model(TM) of a flexible pipe section mechanics is established, in which the carcass layer and the pressure armor layer are equivalent to the orthogonal anisotropic layers due to its complex cross-section structure. The calculation results of the TM are consistent with those of a finite element model(FEM), which can accurately describe the torsional response of the flexible pipe.Subsequently, the TM and FEM are used to discuss the influence of boundary conditions on the torsional response.The structure of the flexible pipe is stable when twisted counterclockwise. However, limiting the top axial displacement can improve the axial and radial instability of the tensile armor layer when twisted clockwise. Finally, it is recommended that the flexible pipe can be kept under top fixation during service or installation to avoid torsional failure. 展开更多
关键词 flexible pipe torsional response analytical model finite element model
下载PDF
Proper orthogonal decomposition based seismic source wavefield reconstruction for finite element reverse time migration
4
作者 Wen-Zhuo Tan Bang-Yu Wu +1 位作者 Rui Li Bo Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期199-211,共13页
The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The b... The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The boundary value method(BVM),based on the finite difference method(FDM),can be used to reconstruct the source wavefield in the reverse time propagation in the same way as the receiver wavefield,which can reduce the storage burden of the RTM data.Considering that the FDM cannot well handle models with discontinuous material properties and rough interfaces,we develop a source wavefield reconstruction strategy based on the finite element method(FEM),using proper orthogonal decomposition(POD)to enhance computational efficiency.In this method,we divide the whole time period into several segments,and construct the POD basis functions to get a reduced order model(ROM)for the source wavefield reconstruction in each segment.We show the corresponding quantitative analysis of the storage requirement of the POD-FEM.Numerical tests on the homogeneous model show the effectiveness of the proposed method,while the layered model and part of the Marmousi model tests indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory usage compared with the full-stored method(FSM)and the BVM,and can be effectively applied in imaging. 展开更多
关键词 Reverse time migration Seismic wavefield reconstruction finite element modeling Proper orthogonal decomposition
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
5
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler Rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
Behaviour of non-ballast pre-stressed and precast track structures in high speed railway based on multiscale finite element model
6
作者 Yuhang Wang Jjun Wang +2 位作者 Qi Tang Jike Tan Guobing Lu 《High-Speed Railway》 2023年第1期70-85,共16页
In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditio... In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized. 展开更多
关键词 High speed railway Non-ballast track Multiscale finite element model
下载PDF
Micro computed tomography based finite element models for elastic and strength properties of 3D printed glass scaffolds
7
作者 Erica Farina Dario Gastaldi +4 位作者 Francesco Baino Enrica Verne Jonathan Massera Gissur Orlygsson Pasquale Vena 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第2期292-306,共15页
In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibe... In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibers along two perpendicular directions on parallel layers with a 90°tilting between two adjacent layers.A parametric study is first presented with the purpose to assess the effect of the major design parameters on the elastic and strength properties of the scaffold;the mechanical properties of the 3D printed scaffolds are eventually estimated by using the\i-CT data with the aim of assessing the effect of defects on the final geometry which are intrinsic in the manufacturing process.The macroscopic elastic modulus and strength of the scaffold are determined by simulating a uniaxial compressive test along the direction which is perpendicular to the layers of the printed fibers.An iterative approach has been used in order to determine the scaffold strength.A partial validation of the computational model has been obtained through comparison of the computed results with experimental values presented in[10]on a ceramic scaffold having the same geometry.All the results have been presented as non-dimensional values.The finite element analyses have shown which of the selected design parameters have the major effect on the stiffness and strength,being the porosity and fiber shifting between adjacent layers the most important ones.The analyses carried out on the basis of the/x-C7 data have shown elastic modulus and strength which are consistent with that found on ideal geometry at similar macroscopic porosity. 展开更多
关键词 Bioactive glass Scaffold porosity finite element model μ-CT
原文传递
Dynamic finite element model updating using meta-model and genetic algorithm 被引量:3
8
作者 费庆国 李爱群 缪长青 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期213-217,共5页
Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algori... Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%. 展开更多
关键词 finite element model model updating response surface model genetic algorithm
下载PDF
Autologous nerve graft repair of different degrees of sciatic nerve defect:stress and displacement at the anastomosis in a three-dimensional finite element simulation model 被引量:1
9
作者 Cheng-dong Piao Kun Yang +1 位作者 Peng Li Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期804-807,共4页
In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the ... In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. There- fore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anas- tomosis after autologous nerve grafting. 展开更多
关键词 nerve regeneration sciatic nerve injury autologous nerve grafting epineurial suturing three-dimensional finite element models load stress DISPLACEMENT neural regeneration
下载PDF
Compression of finite element hybrid mesh
10
作者 曾建江 陈文亮 翟建军 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期165-169,共5页
A method for encoding and compressing finite element models is proposed. Themodel may be various non-simple topological structures and contain any combinations of beams,triangular elements and quadrilateral elements. ... A method for encoding and compressing finite element models is proposed. Themodel may be various non-simple topological structures and contain any combinations of beams,triangular elements and quadrilateral elements. First the model is subdivided into simple meshesthat are orientable and manifold. Based on the Edgebreaker algorithm, 13 labelled pairs areintroduced for quadrilateral meshes and five other labelled pairs are introduced for triangles. Thenthe connectivity information of mixed triangle/quadrilateral meshes is coded in a direct manner.Two other bits are used to record the wireframe information. For the pure wireframe model, Taubin'smethod is extended to compress it. The compression algorithm is implemented and evaluated.Experiments with several models show that the method achieves excellent compression ratios. 展开更多
关键词 finite element model MESH compression
下载PDF
Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion-deformation heat-treatment 被引量:5
11
作者 赵娜 杨延清 +3 位作者 韩明 罗贤 冯广海 张荣军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2226-2232,共7页
Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS fin... Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS finite element software, and the effects of the mould material properties, such as coefficient of thermal expansion (CTE), elastic modulus and yield strength, on the pressure were discussed. The simulated results show that the relatively uniform heat-induced pressure, approximately 503 MPa at 500 ℃, appears on 2024 alloy when 42CrMo steel is as the mould material. The heat-induced pressure increases with decreasing the CTE and the increases of elastic modulus and yield strength of the mould material. The influences of the CTE and elastic modulus on the heat-induced pressure are more notable. 展开更多
关键词 aluminum alloy heat-induced pressure finite element modeling temperature field stress field material properties
下载PDF
Prediction of Cross-Tension Strength of Self-Piercing Riveted Joints Using Finite Element Simulation and XGBoost Algorithm 被引量:8
12
作者 Jianping Lin Chengwei Qi +4 位作者 Hailang Wan Junying Min Jiajie Chen Kai Zhang Li Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期168-178,共11页
Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension stren... Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension strength of SPR joints was proposed on the basis of finite element(FE)simulation and extreme gradient boosting decision tree(XGBoost)algorithm.An FE model of SPR process was established to simulate the plastic deformations of rivet and substrate materials and verified in terms of cross-sectional dimensions of SPR joints.The residual mechanical field from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints,and cross-tension strengths from FE simulation show a good consistence with the experiment result.Based on the verified FE model,the mechanical properties and thickness of substrate materials were varied and then used for FE simulation to obtain cross-tension strengths of a number of SPR joints,which were used to train the regression model based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints.Results show that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regression model with a respective error less than 7.6%compared to experimental values. 展开更多
关键词 Self-piercing riveting Joint strength Cross-tension finite element modeling Machine learning
下载PDF
Finite element modeling of pore-fluid flow in the Dachang ore district,Guangxi,China:Implications for hydrothermal mineralization 被引量:8
13
作者 Minghui Ju Chongbin Zhao +1 位作者 Tagen Dai Jianwen Yang 《Geoscience Frontiers》 SCIE CAS 2011年第3期463-474,共12页
Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to un... Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district. 展开更多
关键词 finite element modeling Dachang ore district Hydrothermalmineralization Salinity-induced buoyancy
下载PDF
Finite element modeling assumptions impact on seismic response demands of MRF-buildings 被引量:4
14
作者 Shehata E Abdel Raheem Ahmed K Abdel Zaher Ahmed MA Taha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期821-834,共14页
Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the compu... Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the computational tools used and the inherent assumptions in the modelling process. Thus, it is essential to investigate the sensitivity of the response demands to the corresponding modelling assumption. Many parameters and assumptions are justified to generate effective structural finite element(FE) models of buildings to simulate lateral behaviour and evaluate seismic design demands. As such, the present study focuses on the development of reliable FE models with various levels of refinement. The effects of the FE modelling assumptions on the seismic response demands on the design of buildings are investigated. the predictive ability of a FE model is tied to the accuracy of numerical analysis; a numerical analysis is performed for a series of symmetric buildings in active seismic zones. The results of the seismic response demands are presented in a comparative format to confirm drift and strength limits requirements. A proposed model is formulated based on a simplified modeling approach, where the most refined model is used to calibrate the simplified model. 展开更多
关键词 RC-MRF buildings design codes provisions seismic design finite element modeling modeling assumptions response demands
下载PDF
Experimental Study and Finite Element Polycrystal Model Simulation of the Cold Rolling Textures in a Powder Metallurgy Processed Pure Aluminum Plate 被引量:4
15
作者 LiqingCHEN NaoyukiKanetake 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期148-154,共7页
Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however... Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however, the textures in powder metallurgy (PM) processed aluminum has been rarely reported. In this article, a pure aluminum plate was prepared via PM route. The starting billet was first produced with uni-axially cold compaction and flat hot-extrusion and then followed by cold rolling processes. The hot-extruded and cold rolling deformation textures of the pure PM aluminum at 50%, 80% and 90% cold rolling reductions were studied by orientation distribution functions (ODFs) analysis. The finite element polycrystal model (FEPM) was finally utilized to simulate the cold rolling textural evolution at various stages of cold rolling. In FEPM simulation, the initial hot-extruded textures were taken into account as inputs. The results showed that typical β-fiber texture formed in pure PM aluminum with the cold rolling reduction increased till 80%, and there was not much change after excessive cold rolling deformation. Homogeneous slip is not the only deformation mode in PM processed pure aluminum plate at over 80% cold rolling reduction. The experimental results were qualitatively in good agreement with the simulated ones. 展开更多
关键词 TEXTURE Cold rolling Aluminium finite element polycrystal model (FEPM) Powder metallurgy
下载PDF
Determination of the Normal Contact Stiffness and Integration Time Step for the Finite Element Modeling of Bristle-Surface Interaction 被引量:4
16
作者 Libardo V.Vanegas-Useche Magd M.Abdel-Wahab Graham A.Parker 《Computers, Materials & Continua》 SCIE EI 2018年第7期169-184,共16页
In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITS... In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITSs are required.Moreover,the selection of a suitable value of Kn is a critical issue,as the impact behavior depends dramatically on this parameter.In this work,a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete surface.Furthermore,a suitable ITS is determined.The experiments consist of releasing a steel bristle that is placed vertically at a certain distance from a concrete surface and tracking the impact.Similarly,in the finite element analyses,a beam is modeled in free fall and impacting a surface;contact and target elements are attached to the beam and the surface,respectively.The results of the experiments and the modeling are integrated through the principle of conservation of energy,the principle of linear impulse and momentum,and Newton’s second law.The results demonstrate that,for the case studied,Kn and the impact time tend to be independent of the velocity just before impact and that Kn has a very large variation,as concrete is a composite material with a rough surface.Also,the ratio between the largest height of the bristle after impact and the initial height tends to be constant. 展开更多
关键词 BRUSH street sweeping finite element modeling contact mechanics
下载PDF
Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT 被引量:3
17
作者 张海军 周储伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期639-645,共7页
The precise microscopic feature of carbon-carbon(C/C) composites is essential {or an accurate predic tion of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial... The precise microscopic feature of carbon-carbon(C/C) composites is essential {or an accurate predic tion of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial model. Micro computed lomography(CT) scan can well describe internal microstruetures of composites. Therefore, a reconstructed model is developed based on mireo-CT, by a series of prodcedures including extrac tlng components, generating new binary images and establishing a finite element (FE) model. Compared with the model designed by reconstructed commercial software MIMICS. the presented reconstructed FE model is superior in terms of high mesh quality and eontrollable mesh cluantity. The precision of the model is verified by experiment. 展开更多
关键词 C/C composites mirco-CF binary image reconstructed procedure finite element model
下载PDF
3-D finite element modeling for evolution of stress field and interaction among strong earthquakes in Sichuan-Yunnan region 被引量:3
18
作者 CHEN Hua-ran(陈化然) +11 位作者 CHEN Lian-wang(陈连旺) MA Hong-sheng(马宏生) LI Yi-qun(李轶群) ZHANG Jie-qing(张杰卿) HE Qiao-yun(何巧云) WANG Jian-guo(王建国) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第6期625-634,共10页
Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By rep... Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction. 展开更多
关键词 D finite element model background stress field stress field caused by fault creep stress field triggered by strong earthquake
下载PDF
A Finite Element Cable Model and Its Applications Based on the Cubic Spline Curve 被引量:2
19
作者 方子帆 贺青松 +3 位作者 向兵飞 肖化攀 何孔德 杜义贤 《China Ocean Engineering》 SCIE EI CSCD 2013年第5期683-692,共10页
For accurate prediction of the deformation of cable in the towed system, a new finite element model is presented that provides a representation of both the bending and torsional effects. In this paper, the cubic splin... For accurate prediction of the deformation of cable in the towed system, a new finite element model is presented that provides a representation of both the bending and torsional effects. In this paper, the cubic spline interpolation function is applied as the trial solution. By using a weighted residual approach, the discretized motion equations for the new finite element model are developed. The model is calculated with the computation program complier by Matlab. Several numerical examples are presented to illustrate the numerical schemes. The results of numerical simulation are stable and valid, and consistent with the mechanical properties of the cable. The model can be applied to kinematics analysis and the design of ocean cable, such as mooring lines, towing, and ROV umbilical cables. 展开更多
关键词 tension stiffness bending stiffness torsion stiffness cubic spline curve Galerkin criterion finite element model
下载PDF
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling 被引量:2
20
作者 金秋雪 刘波 +8 位作者 刘燕 王维维 汪恒 许震 高丹 王青 夏洋洋 宋志棠 封松林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期128-131,共4页
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ... An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current. 展开更多
关键词 PCRAM cell RESET Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by finite element Modeling of by in with
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部