For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ...For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.展开更多
A singularly perturbed advection-diffusion two-point Robin boundary value problem whose solution has a single boundary layer is considered. Based on the piecewise linear polynomial approximation, the finite element me...A singularly perturbed advection-diffusion two-point Robin boundary value problem whose solution has a single boundary layer is considered. Based on the piecewise linear polynomial approximation, the finite element method is applied to the problem. Estimation of the error between solution and the finite element approximation is given in energy norm on shishkin-type mesh.展开更多
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body...In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.展开更多
This paper proposes a robust finite element method for a three-dimensional fourth-order elliptic singular perturbation problem. The method uses the three-dimensional Morley element and replaces the finite element func...This paper proposes a robust finite element method for a three-dimensional fourth-order elliptic singular perturbation problem. The method uses the three-dimensional Morley element and replaces the finite element functions in the part of bilinear form corresponding to the second-order differential operator by a suitable approximation. To give such an approximation, a convergent nonconforming element for the second-order problem is constructed. It is shown that the method converges uniformly in the perturbation parameter.展开更多
In this paper,a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection–diffusion problem is analyzed.The method is shown to be convergent uniformly in the p...In this paper,a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection–diffusion problem is analyzed.The method is shown to be convergent uniformly in the perturbation parameterǫprovided only that ∈≤N^(−1).An O(N^(−2)(lnN)^(1/2))convergent rate in a discrete streamline-diffusion norm is established under certain regularity assump-tions.Finally,through numerical experiments,we verified the theoretical results.展开更多
Abstract A finite element method is proposed for the singularly perturbed reaction-diffusion problem. An optimal error bound is derived, independent of the perturbation parameter.
Presents information on singularly peturbed two-point boundary value problem of convection-diffusion type. Analysis of the problem; Details of an hp version finite element method on a strongly graded piecewise uniform...Presents information on singularly peturbed two-point boundary value problem of convection-diffusion type. Analysis of the problem; Details of an hp version finite element method on a strongly graded piecewise uniform mesh of Shiskin type; Convergence of the method with respect to the singular perturbation parameter.展开更多
The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the...The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.展开更多
In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method i...In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h|lnε|3/2) for errors in the approximate solutions in the energy norm is obtained on the triangular Bakhvalov-type mesh. Numerical results are presented to verify the stability and the convergent rate of this finite element method.展开更多
In [16], Stynes and O' Riordan(91) introduced a local exponentially fitted finite element (FE) scheme for a singularly perturbed two-point boundary value problem without turning-point. An E-uniform h(1/2)-order ac...In [16], Stynes and O' Riordan(91) introduced a local exponentially fitted finite element (FE) scheme for a singularly perturbed two-point boundary value problem without turning-point. An E-uniform h(1/2)-order accuracy was obtain for the epsilon-weighted energy norm. And this uniform order is known as an optimal one for global exponentially fitted FE schemes (see [6, 7, 12]). In present paper, this scheme is used to a parabolic singularly perturbed problem. After some subtle analysis, a uniformly in epsilon convergent order h\ln h\(1/2) + tau is achieved (h is the space step and tau is the time step), which sharpens the results in present literature. Furthermore, it implies that the accuracy order in [16] is actuallay h\ln h\(1/2) rather than h(1/2).展开更多
A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element m...A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.展开更多
Let Ω CR^d,1≤d≤3, be a bounded d-polytope. Consider the parabolic equation on Q with the Dirac delta function on the right hand side. We study the well-posedness, regularity, and the interior error estimate of semi...Let Ω CR^d,1≤d≤3, be a bounded d-polytope. Consider the parabolic equation on Q with the Dirac delta function on the right hand side. We study the well-posedness, regularity, and the interior error estimate of semidiscrete finite element approximations of the equation. In particular, we derive that the interior error is bounded by the best local approximation error, the negative norms of the error, and the negative norms of the time derivative of the error. This result implies different convergence rates for the numerical solution in different interior regions, especially when the region is close to the singular point. Numerical test results are reported to support the theoretical prediction.展开更多
This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between th...This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness and mass changes and the modal data measurements of the tested structure such as measured mode shape readings.Structural updating parameters including both stiffness and mass parameters are employed to represent the differences in structural parameters between the finite element model and the associated tested structure.These updating parameters are then evaluated by an iterative solution procedure,giving optimised solutions in the least squares sense without requiring an optimisation technique.In order to reduce the influence of modal measurement uncertainty,the truncated singular value decomposition regularization method incorporating the quasi-optimality criterion is employed to produce reliable solutions for the structural updating parameters.Finally,the numerical investigations of a space frame structure and the practical applications to the Canton Tower benchmark problem demonstrate that the proposed method can correctly update the given finite element model using the incomplete modal data identified from the recorded ambient vibration measurements.展开更多
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti...In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.展开更多
In this paper,a robust modified weak Galerkin(MWG)finite element method for reaction-diffusion equations is proposed and investigated.An advantage of this method is that it can deal with the singularly perturbed react...In this paper,a robust modified weak Galerkin(MWG)finite element method for reaction-diffusion equations is proposed and investigated.An advantage of this method is that it can deal with the singularly perturbed reaction-diffusion equations.Another advantage of this method is that it produces fewer degrees of freedom than the traditional WG method by eliminating the element boundaries freedom.It is worth pointing out that,in our method,the test functions space is the same as the finite element space,which is helpful for the error analysis.Optimalorder error estimates are established for the corresponding numerical approximation in various norms.Some numerical results are reported to confirm the theory.展开更多
The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the sp...The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given.展开更多
In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges i...In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges in the energy norm uniformly with respect to the perturbation parameter.展开更多
This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of ...This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of finite element functions is used in the lower part of the bilinear form. It is shown that the modified method converges uniformly in the perturbation parameter.展开更多
In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal co...In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal convergence order.Numerical experiments are presented to verify our theoretical estimates.展开更多
基金supported by National Natural Science Foundation of China(11771257)the Shandong Provincial Natural Science Foundation of China(ZR2023YQ002,ZR2023MA007,ZR2021MA004)。
文摘For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.
文摘A singularly perturbed advection-diffusion two-point Robin boundary value problem whose solution has a single boundary layer is considered. Based on the piecewise linear polynomial approximation, the finite element method is applied to the problem. Estimation of the error between solution and the finite element approximation is given in energy norm on shishkin-type mesh.
基金supported by the US ARO grants 49308-MA and 56349-MAthe US AFSOR grant FA9550-06-1-024+1 种基金he US NSF grant DMS-0911434the State Key Laboratory of Scientific and Engineering Computing of Chinese Academy of Sciences during a visit by Z.Li between July-August,2008.
文摘In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.
基金Acknowledgments. This work was supported by the National Natural Science Foundation of China (Project No. 10571006).
文摘This paper proposes a robust finite element method for a three-dimensional fourth-order elliptic singular perturbation problem. The method uses the three-dimensional Morley element and replaces the finite element functions in the part of bilinear form corresponding to the second-order differential operator by a suitable approximation. To give such an approximation, a convergent nonconforming element for the second-order problem is constructed. It is shown that the method converges uniformly in the perturbation parameter.
基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LY15A010018)Zhejiang Provincial Department of Education(Grant No.Y201431793).
文摘In this paper,a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection–diffusion problem is analyzed.The method is shown to be convergent uniformly in the perturbation parameterǫprovided only that ∈≤N^(−1).An O(N^(−2)(lnN)^(1/2))convergent rate in a discrete streamline-diffusion norm is established under certain regularity assump-tions.Finally,through numerical experiments,we verified the theoretical results.
文摘Abstract A finite element method is proposed for the singularly perturbed reaction-diffusion problem. An optimal error bound is derived, independent of the perturbation parameter.
基金the U.S. National Science Foundation through grants DMS-9626193, DMS-0074301, and INT-9605050.
文摘Presents information on singularly peturbed two-point boundary value problem of convection-diffusion type. Analysis of the problem; Details of an hp version finite element method on a strongly graded piecewise uniform mesh of Shiskin type; Convergence of the method with respect to the singular perturbation parameter.
文摘The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.
基金This work is supported by National Natural Science Foundation of China (NSFC10671023) and Beijing Municipal Education Commission (71D0911003). The second author acknowledges the support from National Natural Science Foundation of China (NSFC10771019).
文摘In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h|lnε|3/2) for errors in the approximate solutions in the energy norm is obtained on the triangular Bakhvalov-type mesh. Numerical results are presented to verify the stability and the convergent rate of this finite element method.
文摘In [16], Stynes and O' Riordan(91) introduced a local exponentially fitted finite element (FE) scheme for a singularly perturbed two-point boundary value problem without turning-point. An E-uniform h(1/2)-order accuracy was obtain for the epsilon-weighted energy norm. And this uniform order is known as an optimal one for global exponentially fitted FE schemes (see [6, 7, 12]). In present paper, this scheme is used to a parabolic singularly perturbed problem. After some subtle analysis, a uniformly in epsilon convergent order h\ln h\(1/2) + tau is achieved (h is the space step and tau is the time step), which sharpens the results in present literature. Furthermore, it implies that the accuracy order in [16] is actuallay h\ln h\(1/2) rather than h(1/2).
文摘A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.
基金Li Guo was supported in part by the National Natural Science Foundation of China under the grant 11601536.Hengguang Li was supported in part by the National Science Foundation Grant DMS-1418853,by the Natural Science Foundation of China Grant 11628104,and by the Wayne State University Grants Plus Program.Yang Yang was supported in part by the National Natural Science Foundation of China under the grants 11571367&11601536 and the Fundamental Research Funds for the Central Universities 18CX05003A.
文摘Let Ω CR^d,1≤d≤3, be a bounded d-polytope. Consider the parabolic equation on Q with the Dirac delta function on the right hand side. We study the well-posedness, regularity, and the interior error estimate of semidiscrete finite element approximations of the equation. In particular, we derive that the interior error is bounded by the best local approximation error, the negative norms of the error, and the negative norms of the time derivative of the error. This result implies different convergence rates for the numerical solution in different interior regions, especially when the region is close to the singular point. Numerical test results are reported to support the theoretical prediction.
文摘This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness and mass changes and the modal data measurements of the tested structure such as measured mode shape readings.Structural updating parameters including both stiffness and mass parameters are employed to represent the differences in structural parameters between the finite element model and the associated tested structure.These updating parameters are then evaluated by an iterative solution procedure,giving optimised solutions in the least squares sense without requiring an optimisation technique.In order to reduce the influence of modal measurement uncertainty,the truncated singular value decomposition regularization method incorporating the quasi-optimality criterion is employed to produce reliable solutions for the structural updating parameters.Finally,the numerical investigations of a space frame structure and the practical applications to the Canton Tower benchmark problem demonstrate that the proposed method can correctly update the given finite element model using the incomplete modal data identified from the recorded ambient vibration measurements.
文摘In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant 11931003)the National Natural Science Foundation of China(Grants 41974133,11971410)the Natural Science Foundation of Lingnan Normal University(Grant ZL2038).
文摘In this paper,a robust modified weak Galerkin(MWG)finite element method for reaction-diffusion equations is proposed and investigated.An advantage of this method is that it can deal with the singularly perturbed reaction-diffusion equations.Another advantage of this method is that it produces fewer degrees of freedom than the traditional WG method by eliminating the element boundaries freedom.It is worth pointing out that,in our method,the test functions space is the same as the finite element space,which is helpful for the error analysis.Optimalorder error estimates are established for the corresponding numerical approximation in various norms.Some numerical results are reported to confirm the theory.
文摘The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given.
文摘In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges in the energy norm uniformly with respect to the perturbation parameter.
基金The work of the first author was supported by the National Natural Science Foundation of China (10571006). The work of the second author was supported by National Science Foundation DMS-0209479 and DMS-0215392 and the Changjiang Professorship through Peking University.
文摘This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of finite element functions is used in the lower part of the bilinear form. It is shown that the modified method converges uniformly in the perturbation parameter.
基金the National Natural Science Foundation of China(Grant Nos.10771224,10601070)the Guangdong Provincial Natural Science Foundation of China(Grant No.05003308)+1 种基金MOE Project of Key Research Institute of Humanities and Social Sciences at UniversitiesChina-France-Russia Mathematics Collaboration(Grant No.34000-3275100)
文摘In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal convergence order.Numerical experiments are presented to verify our theoretical estimates.