Energy absorption performance has been a long-pursued research topic in designing desired materials and structures subject to external dynamic loading.Inspired by natural bio-structures,herein,we develop both numerica...Energy absorption performance has been a long-pursued research topic in designing desired materials and structures subject to external dynamic loading.Inspired by natural bio-structures,herein,we develop both numerical and theoretical models to analyze the energy absorption behaviors of Weaire,Floret,and Kagome-shaped thin-walled structures.We demonstrate that these bio-inspired structures possess superior energy absorption capabilities compared to the traditional thin-walled structures,with the specific energy absorption about 44%higher than the traditional honeycomb.The developed mechanical model captures the fundamental characteristics of the bio-inspired honeycomb,and the mean crushing force in all three structures is accurately predicted.Results indicate that although the basic energy absorption and deformation mode remain the same,varied geometry design and the corresponding material distribution can further boost the energy absorption of the structure,providing a much broader design space for the next-generation impact energy absorption structures and systems.展开更多
为分析中耳软组织粘弹性材料特性对人耳系统动力学特性影响,建立包括外耳道、中耳及耳蜗的整耳有限元模型。外耳道及中耳模型用微CT扫描与逆向成型技术建立,耳蜗采用双腔导管形式简化模型。基于该模型,中耳部分软组织材料属性采用线性...为分析中耳软组织粘弹性材料特性对人耳系统动力学特性影响,建立包括外耳道、中耳及耳蜗的整耳有限元模型。外耳道及中耳模型用微CT扫描与逆向成型技术建立,耳蜗采用双腔导管形式简化模型。基于该模型,中耳部分软组织材料属性采用线性粘弹性,以表征动态分析中能量损耗。在外耳道施加90 d B SPL声压模拟声激励,并在计算中考虑外耳道气体、中耳固体及耳蜗流体多场耦合作用。中耳结构响应包括鼓膜脐部与镫骨底板位移及镫骨底板速度传递函数,耳蜗流体压力响应用于计算中耳压力增益、耳蜗输入声阻抗及压力逆向传递函数。结果表明,考虑粘弹性后,人耳系统动态响应参数较线弹性有一定程度改善,尤其在高频段提升较明显,与实验测量数据匹配效果更好。展开更多
文摘Energy absorption performance has been a long-pursued research topic in designing desired materials and structures subject to external dynamic loading.Inspired by natural bio-structures,herein,we develop both numerical and theoretical models to analyze the energy absorption behaviors of Weaire,Floret,and Kagome-shaped thin-walled structures.We demonstrate that these bio-inspired structures possess superior energy absorption capabilities compared to the traditional thin-walled structures,with the specific energy absorption about 44%higher than the traditional honeycomb.The developed mechanical model captures the fundamental characteristics of the bio-inspired honeycomb,and the mean crushing force in all three structures is accurately predicted.Results indicate that although the basic energy absorption and deformation mode remain the same,varied geometry design and the corresponding material distribution can further boost the energy absorption of the structure,providing a much broader design space for the next-generation impact energy absorption structures and systems.
文摘为分析中耳软组织粘弹性材料特性对人耳系统动力学特性影响,建立包括外耳道、中耳及耳蜗的整耳有限元模型。外耳道及中耳模型用微CT扫描与逆向成型技术建立,耳蜗采用双腔导管形式简化模型。基于该模型,中耳部分软组织材料属性采用线性粘弹性,以表征动态分析中能量损耗。在外耳道施加90 d B SPL声压模拟声激励,并在计算中考虑外耳道气体、中耳固体及耳蜗流体多场耦合作用。中耳结构响应包括鼓膜脐部与镫骨底板位移及镫骨底板速度传递函数,耳蜗流体压力响应用于计算中耳压力增益、耳蜗输入声阻抗及压力逆向传递函数。结果表明,考虑粘弹性后,人耳系统动态响应参数较线弹性有一定程度改善,尤其在高频段提升较明显,与实验测量数据匹配效果更好。