Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a...Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.展开更多
In this study, for the purpose of improving the efficiency and accuracy of numerical simulation of massive concrete, the symmetric successive over relaxation-preconditioned conjugate gradient method (SSOR-PCGM) with...In this study, for the purpose of improving the efficiency and accuracy of numerical simulation of massive concrete, the symmetric successive over relaxation-preconditioned conjugate gradient method (SSOR-PCGM) with an improved iteration format was derived and applied to solution of large sparse symmetric positive definite linear equations in the computational process of the finite element analysis. A three-dimensional simulation program for massive concrete was developed based on SSOR-PCGM with an improved iteration format. Then, the programs based on the direct method and SSOR-PCGM with an improved iteration format were used for computation of the Guandi roller compacted concrete (RCC) gravity dam and an elastic cube under free expansion. The comparison and analysis of the computational results show that SSOR-PCGM with the improved iteration format occupies much less physical memory and can solve larger-scale problems with much less computing time and flexible control of accuracy.展开更多
Tight and unconventional reservoirs have become the focus with the progress of petroleum exploration and development.Micro-fractures in these reservoirs can effectively improve reservoir permeability,and well-develope...Tight and unconventional reservoirs have become the focus with the progress of petroleum exploration and development.Micro-fractures in these reservoirs can effectively improve reservoir permeability,and well-developed micro-fractures can serve to directly improve productivity.Compared with the centered electrical well logging method,the Micro Spherical Focused Logging(MSFL)is more suitable for microfracture identification due to its high resolution and near borehole wall measuring method.In this study,an anisotropic model is used to depict micro-fractured formation.First,a forward model with microfractured formation,borehole,logging instrument and surrounding rock is established.Subsequently,MSFL responses under different micro-fracture porosity,resistivity,dip angle and borehole radius,are calculated based on the finite element method(FEM).Finally,the MSFL responses under different microfracture parameters are analyzed with the response laws clarified.展开更多
Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to ...Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to the accuracy and effectiveness of extrusion process analyses. In this paper, the extrusion processes of two complex aluminum profiles are simulated with FEM and FVM respectively. The merit and disadvantage of these two methods are analyzed. The finite element method exhibits higher calculation efficiency in the simulation of a lock catch extrusion process. However, due to frequent rezoning in simulation of complex extrusion process, sharp distortion of finite element mesh can decrease computational accuracy. Therefore the volume loss in FEM simulation is larger than that in FVM simulation by five percent. Based on Euler description, the finite volume method employs structured element mesh covering entire material flowing area, which makes it more robust in the simulation of complicate extrusion process. The deformation configuration with FVM is much smoother than that with FEM in the extrusion simulation of a thin-walled aluminum profile, although FVM requires more computation time.展开更多
Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh...Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh independently of f luid motion, and the container fixed noninertial coordinate system is employed to establish the governing equations so that the mesh is needed to be updated in this coordinate system only. This leads to a very simple mesh moving algorithm which makes it easy to trace the motion of the moving boundaries and the free su rface without producing undesirable distortion of the computational mesh. The fi nite element method and finite difference method are used spacewise and timewise , respectively. A numerical example involving either forced horizontal oscillati on or forced pitching oscillation of the fluid filled container is presented to illustrate the effectiveness and the robustness of the method. In additi on, this work can be extended for the fluid structure interaction problems.展开更多
Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short ti...Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given.展开更多
According to the stress-strain curves of single-phase martensite and single-phase ferrite steels,whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel,the stress-strain cur...According to the stress-strain curves of single-phase martensite and single-phase ferrite steels,whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel,the stress-strain curve of the low Si-Mn-Nb dual-phase steel was simulated using the finite element method(FEM).The simulated result was compared with the measured one and they fit closely with each other, which proves that the FE model is correct.Based on the FE model,the microstress and microstrain of the dual-phase steel were analyzed. Meanwhile,the effective factors such as the volume fraction of martensite and the yield stress ratio between martensite and ferrite phases on the stress-strain curves of the dual-phase steel were simulated,too.The simulated results indicate that for the low Si-Mn-Nb dual-phase steel, the maximum stress occurs in the martensite region,while the maximum strain occurs in the ferrite one.The effect of the volume fraction of martensite(fm) and the yield stress ratio on the stress-strain curve of the dual-phase steel is small in the elastic part,while it is obvious in the plastic part.In the plastic part of this curve,the strain decreases with the increase of f_M,while it decreases with the decrease of the yield stress ratio.展开更多
Cave carbonate formations are characterized by heterogeneity, which makes electrical log prediction difficult. It is currently important to know how to use the dual laterolog to accurately identify and quantitatively ...Cave carbonate formations are characterized by heterogeneity, which makes electrical log prediction difficult. It is currently important to know how to use the dual laterolog to accurately identify and quantitatively evaluate caves. Using numerical simulation to calculate electrical log responses can provide a theoretical basis for cave identification and evaluation. In this paper, based on the dual laterolog principles, we first study different size spherical cave models using the finite element method (FEM), determine a relation between resistivity and cave filling after comprehensively studying the log responses of cave models with different filling material, and finally study the dual laterolog responses on caves filled with shale, limestone, conglomerate, and thin laminated formation of sand and shale. The numerical results provide a theoretical basis for identification and evaluation of carbonate cave reservoirs.展开更多
Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant e...Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method(FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction(FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice(60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.展开更多
Projection welding is a variation of electric resistance welding with the dynamic changes of the flow paths for heat and electrical properties with changing temperature caused by the large plastic deformation collapse...Projection welding is a variation of electric resistance welding with the dynamic changes of the flow paths for heat and electrical properties with changing temperature caused by the large plastic deformation collapse of projection. As the joint type between the auto door hinge and the inner plate, projection welding may bring welding distortions and would affect the assembly quality of auto body. A comprehensive electric-thermal-mechanical numerical simulation was performed to quantitatively simulate the processes of projection welding by using a coupled finite element method. The mechanism of projection collapse and the formation process of nugget were discussed and good conclusions have been achieved comparing with the test results.展开更多
针对转运系统转载物料过程中料斗衬板的磨损影响运输效率的问题,改用新型钢基陶瓷复合衬板来代替传统耐磨钢,采用离散元法(distinct element method,DEM)描述颗粒物料运动过程,通过Archard磨损模型分析预测不同工况条件下衬板磨损规律,...针对转运系统转载物料过程中料斗衬板的磨损影响运输效率的问题,改用新型钢基陶瓷复合衬板来代替传统耐磨钢,采用离散元法(distinct element method,DEM)描述颗粒物料运动过程,通过Archard磨损模型分析预测不同工况条件下衬板磨损规律,并通过磨损规律和磨损特征验证了磨损模型的合理性。基于DEM的有限元法(finite element method,FEM)耦合方法分析了衬板应力与变形特性。研究结果表明:料斗衬板的最大磨损深度随颗粒度增大而减小,随传送带带速、衬板安装高度、衬板安装倾角的增大而增大。结合实际来看,衬板在粒径25mm、带速2.8m/s、高度3000mm、角度60°的工况下磨损最小。铁矿石散料对衬板的摩擦和冲击作用造成的应力较大的位置主要集中在衬板连接的螺栓孔周围,磨损最严重的位置多为颗粒与衬板优先接触区域,因此,为了降低应力集中,应该在衬板连接处加强螺栓孔的强度并进行圆角设计。展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
基金supported by National Natural Science Foundation of China(No. 50175034).
文摘Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.
基金supported by the National Natural Science Foundation of China (Grant No.50808066)
文摘In this study, for the purpose of improving the efficiency and accuracy of numerical simulation of massive concrete, the symmetric successive over relaxation-preconditioned conjugate gradient method (SSOR-PCGM) with an improved iteration format was derived and applied to solution of large sparse symmetric positive definite linear equations in the computational process of the finite element analysis. A three-dimensional simulation program for massive concrete was developed based on SSOR-PCGM with an improved iteration format. Then, the programs based on the direct method and SSOR-PCGM with an improved iteration format were used for computation of the Guandi roller compacted concrete (RCC) gravity dam and an elastic cube under free expansion. The comparison and analysis of the computational results show that SSOR-PCGM with the improved iteration format occupies much less physical memory and can solve larger-scale problems with much less computing time and flexible control of accuracy.
基金This research is funded by SINOPEC Group Project P20039-2.
文摘Tight and unconventional reservoirs have become the focus with the progress of petroleum exploration and development.Micro-fractures in these reservoirs can effectively improve reservoir permeability,and well-developed micro-fractures can serve to directly improve productivity.Compared with the centered electrical well logging method,the Micro Spherical Focused Logging(MSFL)is more suitable for microfracture identification due to its high resolution and near borehole wall measuring method.In this study,an anisotropic model is used to depict micro-fractured formation.First,a forward model with microfractured formation,borehole,logging instrument and surrounding rock is established.Subsequently,MSFL responses under different micro-fracture porosity,resistivity,dip angle and borehole radius,are calculated based on the finite element method(FEM).Finally,the MSFL responses under different microfracture parameters are analyzed with the response laws clarified.
基金Proiects(0452nm034, 0552nm041) supported by the Science and Technology Committee of Shanghai, China
文摘Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to the accuracy and effectiveness of extrusion process analyses. In this paper, the extrusion processes of two complex aluminum profiles are simulated with FEM and FVM respectively. The merit and disadvantage of these two methods are analyzed. The finite element method exhibits higher calculation efficiency in the simulation of a lock catch extrusion process. However, due to frequent rezoning in simulation of complex extrusion process, sharp distortion of finite element mesh can decrease computational accuracy. Therefore the volume loss in FEM simulation is larger than that in FVM simulation by five percent. Based on Euler description, the finite volume method employs structured element mesh covering entire material flowing area, which makes it more robust in the simulation of complicate extrusion process. The deformation configuration with FVM is much smoother than that with FEM in the extrusion simulation of a thin-walled aluminum profile, although FVM requires more computation time.
文摘Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh independently of f luid motion, and the container fixed noninertial coordinate system is employed to establish the governing equations so that the mesh is needed to be updated in this coordinate system only. This leads to a very simple mesh moving algorithm which makes it easy to trace the motion of the moving boundaries and the free su rface without producing undesirable distortion of the computational mesh. The fi nite element method and finite difference method are used spacewise and timewise , respectively. A numerical example involving either forced horizontal oscillati on or forced pitching oscillation of the fluid filled container is presented to illustrate the effectiveness and the robustness of the method. In additi on, this work can be extended for the fluid structure interaction problems.
文摘Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given.
基金supported by the Natural Science Foundation of Hebei Province(No.E2008000822) the Program for One Hundred Excellent Talents of Hebei Province,China.
文摘According to the stress-strain curves of single-phase martensite and single-phase ferrite steels,whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel,the stress-strain curve of the low Si-Mn-Nb dual-phase steel was simulated using the finite element method(FEM).The simulated result was compared with the measured one and they fit closely with each other, which proves that the FE model is correct.Based on the FE model,the microstress and microstrain of the dual-phase steel were analyzed. Meanwhile,the effective factors such as the volume fraction of martensite and the yield stress ratio between martensite and ferrite phases on the stress-strain curves of the dual-phase steel were simulated,too.The simulated results indicate that for the low Si-Mn-Nb dual-phase steel, the maximum stress occurs in the martensite region,while the maximum strain occurs in the ferrite one.The effect of the volume fraction of martensite(fm) and the yield stress ratio on the stress-strain curve of the dual-phase steel is small in the elastic part,while it is obvious in the plastic part.In the plastic part of this curve,the strain decreases with the increase of f_M,while it decreases with the decrease of the yield stress ratio.
基金supported by State Key Laboratory of Petroleum Resources and Prospecting (Grant No. 2009009)Basic Scientific Research Special Fund of Central Colleges (Grant No. 2010ZY28)National Major Projects (Grant No.2008ZX05023-005 and 2008ZX05035-002)
文摘Cave carbonate formations are characterized by heterogeneity, which makes electrical log prediction difficult. It is currently important to know how to use the dual laterolog to accurately identify and quantitatively evaluate caves. Using numerical simulation to calculate electrical log responses can provide a theoretical basis for cave identification and evaluation. In this paper, based on the dual laterolog principles, we first study different size spherical cave models using the finite element method (FEM), determine a relation between resistivity and cave filling after comprehensively studying the log responses of cave models with different filling material, and finally study the dual laterolog responses on caves filled with shale, limestone, conglomerate, and thin laminated formation of sand and shale. The numerical results provide a theoretical basis for identification and evaluation of carbonate cave reservoirs.
基金financially supported by the National Natural Science Foundation of China(Grant No.51679052)the Natural Science Foundation of Heilongjiang Province of China(Grant No.E2018026)the Defense Industrial Technology Development Program(Grant No.JCKY2016604B001)
文摘Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method(FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction(FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice(60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.
基金The National Natural Science Foundation of China(No.50575140)
文摘Projection welding is a variation of electric resistance welding with the dynamic changes of the flow paths for heat and electrical properties with changing temperature caused by the large plastic deformation collapse of projection. As the joint type between the auto door hinge and the inner plate, projection welding may bring welding distortions and would affect the assembly quality of auto body. A comprehensive electric-thermal-mechanical numerical simulation was performed to quantitatively simulate the processes of projection welding by using a coupled finite element method. The mechanism of projection collapse and the formation process of nugget were discussed and good conclusions have been achieved comparing with the test results.
文摘针对转运系统转载物料过程中料斗衬板的磨损影响运输效率的问题,改用新型钢基陶瓷复合衬板来代替传统耐磨钢,采用离散元法(distinct element method,DEM)描述颗粒物料运动过程,通过Archard磨损模型分析预测不同工况条件下衬板磨损规律,并通过磨损规律和磨损特征验证了磨损模型的合理性。基于DEM的有限元法(finite element method,FEM)耦合方法分析了衬板应力与变形特性。研究结果表明:料斗衬板的最大磨损深度随颗粒度增大而减小,随传送带带速、衬板安装高度、衬板安装倾角的增大而增大。结合实际来看,衬板在粒径25mm、带速2.8m/s、高度3000mm、角度60°的工况下磨损最小。铁矿石散料对衬板的摩擦和冲击作用造成的应力较大的位置主要集中在衬板连接的螺栓孔周围,磨损最严重的位置多为颗粒与衬板优先接触区域,因此,为了降低应力集中,应该在衬板连接处加强螺栓孔的强度并进行圆角设计。
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.