期刊文献+
共找到2,154篇文章
< 1 2 108 >
每页显示 20 50 100
Application of Finite Elements Method for Structural Analysis in a Coffee Harvester
1
作者 Evandro Pereira da Silva Fabio Moreira da Silva Ricardo Rodrigues Magalhaes 《Engineering(科研)》 2014年第3期138-147,共10页
Stress concentration and large displacements are usual problems in the components of the structure of agricultural machinery such harvesters coffee, and that finite element method (FEM) can be a tool to minimize its e... Stress concentration and large displacements are usual problems in the components of the structure of agricultural machinery such harvesters coffee, and that finite element method (FEM) can be a tool to minimize its effects. The goal of this paper is to get results of stresses and displacements of a coffee harvester structure by using FEM for static simulation. The main parts of the coffee harvester analyzed were: engine frame, body right and left sides, front and rear end, main beam, coffee reservoir, wheels and fuel tank. Two different design concepts of a coffee harvester machine were analyzed (structure with rear wheels aligned and misaligned) and the results were compared. It was observed that the model with rear wheels misaligned showed maximum displacement lower than the model with rear wheels aligned. Although higher stress was found in the rear wheels misaligned, it was observed that average stresses for the misaligned wheels design were lower in most structural components analyzed. Based on FEM results, the coffee harvester machine with misaligned rear wheels was built and subjected to operational tests without showing any structural failure. 展开更多
关键词 finite elements method Stress Concentration Static Simulation Coffee Harvester
下载PDF
Development of a Methodology for Determination and Analysis of Thermal Displacements of Machine Tools Using Finite Elements Method and Artificial Neural Network
2
作者 Romualdo Figueiredo de Sousa Fracisco Augusto Vieira da Silva Joao Bosco Aquino Silva Jose Carlos de Lima Junior 《Journal of Mechanics Engineering and Automation》 2014年第6期488-498,共11页
In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are thos... In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are those which are thermally induced which are from internal and external heat sources acting on the machine. In this paper, a methodology for determining and analyzing the thermal deformation of machine tools using FEM (finite element method) and ANN (artificial neural networks) is presented. After modeling the machine using FEM is defined the location of the heat sources, it is possible to obtain the temperature gradient and the corresponding thermal deformation at predetermined periods. Results obtained with simulations using the software NX.7.5 showed that this methodology is an effective tool in determining the thermal deformation of the machine, correlating the temperature reading at strategic points with volumetric deformation at the tool tip. Therefore, the thermal analysis of the errors in the pair tool part can be established. After training and validation process, the network will be able to make the prediction of thermal errors just stating the temperature values of specific points of each heat source, providing a way for compensation of thermally induced errors. 展开更多
关键词 Thermal displacement machine tool finite element method artificial neural network.
下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
3
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 Particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
4
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method SUPERCLOSENESS Bakhvalov-type mesh
下载PDF
Extended finite element-based cohesive zone method for modeling simultaneous hydraulic fracture height growth in layered reservoirs
5
作者 Lei Yang Baixi Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2960-2981,共22页
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy... In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed. 展开更多
关键词 Hydraulic fracturing Layered reservoir Simultaneous height growth In situ stress Fracture spacing Extended finite element method(XFEM) Cohesive zone method(CZM)
下载PDF
A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method
6
作者 Yu Cheng Yajun Huang +3 位作者 Shuai Li Zhongbin Zhou Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1935-1960,共26页
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization... A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization. 展开更多
关键词 Shape optimization deep learning flexoelectric structure finite element method isogeometric
下载PDF
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
7
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak Foundation Beam Vibration Equation Hermite finite Element method Error Estimation Numerical Simulation
下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
8
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES finite Element methods Heat Equation Predictor-Corrector Algorithm
下载PDF
Multiscale Finite Element Method for Coupling Analysis of Heterogeneous Magneto-Electro-Elastic Structures in Thermal Environment
9
作者 Xinyue Li Xiaolin Li Hangran Yang 《Journal of Applied Mathematics and Physics》 2024年第9期3099-3113,共15页
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona... Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency. 展开更多
关键词 Multiscale finite Element method MAGNETO-ELECTRO-ELASTIC Multifield Coupling Numerical Base Functions
下载PDF
Gradient Recovery Based Two-Grid Finite Element Method for Parabolic Integro-Differential Optimal Control Problems
10
作者 Miao Yang 《Journal of Applied Mathematics and Physics》 2024年第8期2849-2865,共17页
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ... In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results. 展开更多
关键词 Optimal Control Problem Gradient Recovery Two-Grid finite Element method
下载PDF
Analysis of Linear Triangular Elements for Convection-diffusion Problems by Streamline Diffusion Finite Element Methods
11
作者 ZHOU Jun-ming JIN Da-yong ZHANG Shu-hua 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期43-51,共9页
This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error esti... This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h. 展开更多
关键词 CONVECTION-DIFFUSION streamline diffusion finite element methods linear triangular elements SUPERCONVERGENCE
下载PDF
3D finite element numerical simulation of advanced detection in roadway for DC focus method 被引量:5
12
作者 邓小康 柳建新 +2 位作者 刘海飞 童孝忠 柳卓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2187-2193,共7页
Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detec... Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method. 展开更多
关键词 ROADWAY DC focus advanced detection finite element method
下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
13
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
下载PDF
NONLINEAR BUCKLING ANALYSIS OF TUBING IN DEVIATED WELLS BY FINITE ELEMENT METHOD 被引量:9
14
作者 刘峰 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期36-42,共7页
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ... The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small. 展开更多
关键词 deviated wells drill-tubing BUCKLING non-linearity finite element method
下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
15
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
下载PDF
NUMERICAL INVESTIGATION OF TOROIDAL SHOCK WAVES FOCUSING USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:2
16
作者 陈二云 赵改平 +1 位作者 卓文涛 杨爱玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期9-15,共7页
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.... A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared. 展开更多
关键词 shock wave focusing spherical double Math reflection discontinuous galerkin finite element method
下载PDF
Combined method for fast 3-D finite element modeling of nondestructive testing signal 被引量:1
17
作者 林鹤云 《Journal of Southeast University(English Edition)》 EI CAS 2004年第2期195-199,共5页
A combined method for the fast 3-D finite element modeling of defect responses in nondestructive testing of electromagnetics is presented. The method consists of three numerical techniques: zoom-in technique, differen... A combined method for the fast 3-D finite element modeling of defect responses in nondestructive testing of electromagnetics is presented. The method consists of three numerical techniques: zoom-in technique, difference field technique and iterative solution technique. Utilizing the zoom-in technique, the computational zone focuses on a relatively small domain around the defect. Employing the difference field technique, the axisymmetrical field solution corresponding to the case with no defect can be used to simplify the mesh generation and obtain the modeling results quickly. Using the iterative solution technique, the matrix equation system in the 3-D finite element modeling of nondestructive probe signals can easily be solved. The sample calculation shows that the presented method is highly effective and can consequently save significant computer resources. 展开更多
关键词 Electromagnetic fields finite element method Iterative methods Probes
下载PDF
A Smoothed Finite Element Method for the Static and Free Vibration Analysis of Shells
18
作者 Nhon Nguyen-Thanh Chien Thai-Hoang +1 位作者 Hung Nguyen-Xuan Timon Rabczuk 《Journal of Civil Engineering and Architecture》 2010年第9期13-25,共13页
A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpola... A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples. 展开更多
关键词 Shell element MITC4 elements smoothed finite elements method (SFEM).
下载PDF
HIGH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR 2-D RESONATOR PROBLEM 被引量:2
19
作者 刘梅林 刘少斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期208-213,共6页
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ... The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases. 展开更多
关键词 Runge-Kutta methods finite element methods resonators basis function of high-order polynomial
下载PDF
Error estimates of H^1-Galerkin mixed finite element method for Schrdinger equation 被引量:28
20
作者 LIU Yang LI Hong WANG Jin-feng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期83-89,共7页
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t... An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition. 展开更多
关键词 H1-Galerkin mixed finite element method Schrdinger equation LBB condition optimal error estimates
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部