A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-suppl...A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-supplemented subgroups and use them to determine the structure of some groups.展开更多
Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subg...Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subgroup. In this paper, we obtain several results on s*-completions which imply G to be solvable or supersolvable.展开更多
A subgroup H of a group G is called semipermutable if it is permutable with every subgroup K of G with (|H|, |K|) = 1, and s-semipermutable if it is permutable with every Sylow p-subgroup of G with (p, |H|) ...A subgroup H of a group G is called semipermutable if it is permutable with every subgroup K of G with (|H|, |K|) = 1, and s-semipermutable if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. In this paper, some sufficient conditions for a group to be solvable are obtained in terms of s-semipermutability.展开更多
A subgroup H of a group G is said to have the sub-cover-avoidance property in G ffthereis a chief series 1 = G0 ≤ G1 ≤…≤ Gn - G, such that Gi-1(H ∩ Gi) G for every i = 1,2,... ,l. In this paper, we give some...A subgroup H of a group G is said to have the sub-cover-avoidance property in G ffthereis a chief series 1 = G0 ≤ G1 ≤…≤ Gn - G, such that Gi-1(H ∩ Gi) G for every i = 1,2,... ,l. In this paper, we give some characteristic conditions for a group to be solvable under the assumptions that some subgroups of a group satisfy the sub-cover-avoidance property.展开更多
On the basis of the quasi-isomorphism of finite groups, a new mapping, weak isomorphism, from a finite group to another finite group is defined. Let G and H be two finite groups and G be weak-isomorphic to H. Then G≌...On the basis of the quasi-isomorphism of finite groups, a new mapping, weak isomorphism, from a finite group to another finite group is defined. Let G and H be two finite groups and G be weak-isomorphic to H. Then G≌H if G satisfies one of the following conditions. 1) G is a finite Abelian group. 2) The order of G is p^3. 3 ) The order of G is p^n+1 and G has a cyclic normal subgroup N = 〈a〉 of order p^n. 4) G is a nilpotent group and if p^││G│, then for any P ∈ Sylp (G), P has a cyclic maximal subgroup, where p is a prime; 5) G is a maximal class group of order p4(p〉3).展开更多
Thompson's theorem indicates that a finite group with a nilpotent maximal subgroup of odd order is solvable. As an important application of Thompson's theorem, a finite group is solvable if it has an abelian maximal...Thompson's theorem indicates that a finite group with a nilpotent maximal subgroup of odd order is solvable. As an important application of Thompson's theorem, a finite group is solvable if it has an abelian maximal subgroup. In this paper, we give some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable.展开更多
In this note,we show that if every maximal subgroup of a Sylow p-subgroup of a finite group has a p-solvable supplement then the group is necessarily p-solvable.This gives a positive answer to Problem 17.111 of the Ko...In this note,we show that if every maximal subgroup of a Sylow p-subgroup of a finite group has a p-solvable supplement then the group is necessarily p-solvable.This gives a positive answer to Problem 17.111 of the Kourovka Notebook(Unsolved Problems in Group Theory),which was posed by Skiba.展开更多
The main object of this paper is to investigate the finite groups in which every subgroup is either abelian or normal. We obtain a characterization of the groups for the nonnilpotent case, and we also give some proper...The main object of this paper is to investigate the finite groups in which every subgroup is either abelian or normal. We obtain a characterization of the groups for the nonnilpotent case, and we also give some properties for the nilpotent case.展开更多
A subgroup H of a finite group G is called a TI-subgroup if H ∩ H^x = 1 or H for all x ∈ G. In this paper, a complete classification for finite p-groups, in which all abelian subgroups are TI-subgroups, is given.
In recent years,a series of papers about cover-avoiding property of subgroups appeared and all the studies were connected with chief factors of a finite group.However,about the cover-avoiding property of subgroups for...In recent years,a series of papers about cover-avoiding property of subgroups appeared and all the studies were connected with chief factors of a finite group.However,about the cover-avoiding property of subgroups for non-chief factor,there is no study up to now.The purpose of this paper is to build the theory.Let A be a subgroup of a finite group G and Σ:G0≤G1≤…≤Gn some subgroup series of G.Suppose that for each pair(K,H) such that K is a maximal subgroup of H and G i 1 K < H G i for some i,either A ∩ H = A ∩ K or AH = AK.Then we say that A is Σ-embedded in G.In this paper,we study the finite groups with given systems of Σ-embedded subgroups.The basic properties of Σ-embedded subgroups are established and some new characterizations of some classes of finite groups are given and some known results are generalized.展开更多
A subgroup H of a group G is called s-conditionally permutable in G if for every Sylow subgroup T of G there exists an element x ∈ G such that HTx = TxH. Using the concept of s-conditionally permutable subgroups, som...A subgroup H of a group G is called s-conditionally permutable in G if for every Sylow subgroup T of G there exists an element x ∈ G such that HTx = TxH. Using the concept of s-conditionally permutable subgroups, some new characterizations of finite groups are obtained and several interesting results are generalized.展开更多
A subgroup E of a finite group G is called hypercyclically embedded in G if every chief factor of G below E is cyclic.Let A be a subgroup of a group G.Then we call any chief factor H/AG of G a G-boundary factor of A.F...A subgroup E of a finite group G is called hypercyclically embedded in G if every chief factor of G below E is cyclic.Let A be a subgroup of a group G.Then we call any chief factor H/AG of G a G-boundary factor of A.For any G-boundary factor H/AG of A,we call the subgroup(A∩H)/AG of G/AG a G-trace of A.On the basis of these notions,we give some new characterizations of hypercyclically embedded subgroups.展开更多
Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup...Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G for each prime p dividing the order of H. In this paper, we say that H is weakly S-embedded in G if G has a normal subgroup T such that HT is an S-quasinormal subgroup of G and H VIT ≤ HSE, where HSE denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G. Some results about the influence of weakly S-embedded subgroups on the structure of finite groups are given.展开更多
Let a = {σi| i ∈ I} be some partition of the set of all primes P, G a finite group and σ(G) = {σi|σi ∩ π (G) ≠ Ф}. A set H of subgroups of G is said to be a complete Hall or-set of G if every member ≠...Let a = {σi| i ∈ I} be some partition of the set of all primes P, G a finite group and σ(G) = {σi|σi ∩ π (G) ≠ Ф}. A set H of subgroups of G is said to be a complete Hall or-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G for some σi ∈ σ and H contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). A subgroup H of G is said to be: σ-semipermutablc in G with respect to H if HHi x = Hi x H for all x ∈ G and all x ∈ G and all Hi ∈H such that (|H|, |Hi|) = 1; σ-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set of G. We study the structure of G being based on the assumption that some subgroups of G are σ-semipermutable in G.展开更多
Let G be a finite group and H a subgroup of G. Recall that H is said to be aTI-subgroup ofG ifHg∩H = 1 or H for each b∈ G. In this note, we prove that if all non-nilpotent subgroups of a finite non-nilpotent group G...Let G be a finite group and H a subgroup of G. Recall that H is said to be aTI-subgroup ofG ifHg∩H = 1 or H for each b∈ G. In this note, we prove that if all non-nilpotent subgroups of a finite non-nilpotent group G are TI-subgroups, then G is soluble, and all non-nilpotent subgroups of G are normal.展开更多
Let A be a subgroup of a finite group G. We say that A is a generalized CAP-subgroup of G if for each chief factor H/K of G either A avoids H/K or the following holds:(1) If H/K is non-abelian, then|H :(A ∩H)K | is ...Let A be a subgroup of a finite group G. We say that A is a generalized CAP-subgroup of G if for each chief factor H/K of G either A avoids H/K or the following holds:(1) If H/K is non-abelian, then|H :(A ∩H)K | is a p′-number for every p ∈π((A ∩H)K/K);(2) If H/K is a p-group, then |G : NG(K(A ∩H))| is a p-number. In this paper, we use the generalized CAP-subgroup to characterize the structure of finite groups.Some new characterizations of the hypercyclically embedded subgroups of a finite group are obtained and a series of known results are generalized.展开更多
Let A be a subgroup of a group G and X be a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we investigate ...Let A be a subgroup of a group G and X be a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we investigate further the influence of X-semipermutability of some subgroups on the structure of finite groups. Some new criteria for a group G to be supersoluble or p-nilpotent are obtained.展开更多
文摘A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-supplemented subgroups and use them to determine the structure of some groups.
文摘Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subgroup. In this paper, we obtain several results on s*-completions which imply G to be solvable or supersolvable.
基金Supported by the NSF of China(10471085) Supported by the Shanxi Province(20051007) Supported by the Returned Chinese Students Found of Shanxi Province(Jinliuguanban [2004]7)
文摘A subgroup H of a group G is called semipermutable if it is permutable with every subgroup K of G with (|H|, |K|) = 1, and s-semipermutable if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. In this paper, some sufficient conditions for a group to be solvable are obtained in terms of s-semipermutability.
基金The NSF(10871210)of Chinathe NSF(06023728)of Guangdong Province
文摘A subgroup H of a group G is said to have the sub-cover-avoidance property in G ffthereis a chief series 1 = G0 ≤ G1 ≤…≤ Gn - G, such that Gi-1(H ∩ Gi) G for every i = 1,2,... ,l. In this paper, we give some characteristic conditions for a group to be solvable under the assumptions that some subgroups of a group satisfy the sub-cover-avoidance property.
文摘On the basis of the quasi-isomorphism of finite groups, a new mapping, weak isomorphism, from a finite group to another finite group is defined. Let G and H be two finite groups and G be weak-isomorphic to H. Then G≌H if G satisfies one of the following conditions. 1) G is a finite Abelian group. 2) The order of G is p^3. 3 ) The order of G is p^n+1 and G has a cyclic normal subgroup N = 〈a〉 of order p^n. 4) G is a nilpotent group and if p^││G│, then for any P ∈ Sylp (G), P has a cyclic maximal subgroup, where p is a prime; 5) G is a maximal class group of order p4(p〉3).
基金Supported by National Natural Science Foundation of China (Grant No. 10871032), China Postdoctoral Science Foundation (Grant No. 20100470136) the second author is supported in part by "Agencija za raziskovalno dejavnost Republike Slovenije", proj. mladi raziskovalci, "Agencija za raziskovalno dejavnost Republike Slovenije", Research Program P1-0285
文摘Thompson's theorem indicates that a finite group with a nilpotent maximal subgroup of odd order is solvable. As an important application of Thompson's theorem, a finite group is solvable if it has an abelian maximal subgroup. In this paper, we give some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable.
基金supported by National Natural Science Foundation of China(Grant Nos.11101055 and 11171364)
文摘In this note,we show that if every maximal subgroup of a Sylow p-subgroup of a finite group has a p-solvable supplement then the group is necessarily p-solvable.This gives a positive answer to Problem 17.111 of the Kourovka Notebook(Unsolved Problems in Group Theory),which was posed by Skiba.
基金Foundation item: the National Natural Science Foundation of China (No. 10571128)i the Natural Science Foundation of Jiangsu Education Committee (No. 05KJB110002).
文摘The main object of this paper is to investigate the finite groups in which every subgroup is either abelian or normal. We obtain a characterization of the groups for the nonnilpotent case, and we also give some properties for the nilpotent case.
基金the Natural Science Foundation of China(10161001)the Natural Science Foundation of Guangxi of China+1 种基金the National Natural Science Foundation of Shanghai Education CommitteeSpecial Funds for Major Specialities of Shanghai Education Committee
文摘A subgroup H of a finite group G is called a TI-subgroup if H ∩ H^x = 1 or H for all x ∈ G. In this paper, a complete classification for finite p-groups, in which all abelian subgroups are TI-subgroups, is given.
基金supported by National Natural Science Foundation of China (Grant No.11071229)Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No.2010T2J12)
文摘In recent years,a series of papers about cover-avoiding property of subgroups appeared and all the studies were connected with chief factors of a finite group.However,about the cover-avoiding property of subgroups for non-chief factor,there is no study up to now.The purpose of this paper is to build the theory.Let A be a subgroup of a finite group G and Σ:G0≤G1≤…≤Gn some subgroup series of G.Suppose that for each pair(K,H) such that K is a maximal subgroup of H and G i 1 K < H G i for some i,either A ∩ H = A ∩ K or AH = AK.Then we say that A is Σ-embedded in G.In this paper,we study the finite groups with given systems of Σ-embedded subgroups.The basic properties of Σ-embedded subgroups are established and some new characterizations of some classes of finite groups are given and some known results are generalized.
基金supported by National Natural Science Foundation of China (Grant No. 10771180)Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 08zb059)Research Programme of Chengdu University of Information Technology
文摘A subgroup H of a group G is called s-conditionally permutable in G if for every Sylow subgroup T of G there exists an element x ∈ G such that HTx = TxH. Using the concept of s-conditionally permutable subgroups, some new characterizations of finite groups are obtained and several interesting results are generalized.
基金Research of the first author is supported by aNNSFgrant ofChina(Grant#11371335)WuWen-Tsun Key Laboratory of Mathematics,USTC,Chinese Academy of Sciences.Research of the second author supported by Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(Grant No.2010T2J12).
文摘A subgroup E of a finite group G is called hypercyclically embedded in G if every chief factor of G below E is cyclic.Let A be a subgroup of a group G.Then we call any chief factor H/AG of G a G-boundary factor of A.For any G-boundary factor H/AG of A,we call the subgroup(A∩H)/AG of G/AG a G-trace of A.On the basis of these notions,we give some new characterizations of hypercyclically embedded subgroups.
基金Supported by the National Natural Science Foundation of Chinathe Natural Science Foundation of Guangxi Autonomous Region (No.0249001)
文摘For any saturated formation F of finite groups containing all supersolvable groups, the groups in F are characterized by F-abnormal maximal subgroups.
基金supported by National Natural Science Foundation of China (Grant Nos.10771172,11001226)Postgraduate Innovation Foundation of Southwest University (Grant Nos. ky2009013,ky2010007)
文摘Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G for each prime p dividing the order of H. In this paper, we say that H is weakly S-embedded in G if G has a normal subgroup T such that HT is an S-quasinormal subgroup of G and H VIT ≤ HSE, where HSE denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G. Some results about the influence of weakly S-embedded subgroups on the structure of finite groups are given.
基金Supported by NNSF(Grant No.11771409)Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences
文摘Let a = {σi| i ∈ I} be some partition of the set of all primes P, G a finite group and σ(G) = {σi|σi ∩ π (G) ≠ Ф}. A set H of subgroups of G is said to be a complete Hall or-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G for some σi ∈ σ and H contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). A subgroup H of G is said to be: σ-semipermutablc in G with respect to H if HHi x = Hi x H for all x ∈ G and all x ∈ G and all Hi ∈H such that (|H|, |Hi|) = 1; σ-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set of G. We study the structure of G being based on the assumption that some subgroups of G are σ-semipermutable in G.
基金The first author was supported by NSFC (Grant 11201401) and the China Postdoctoral Science Foundation (Grant 201104027). The second author was supported by H.C. Orsted Postdoctoral Fellowship at DTU (Technical University of Denmark).
文摘Let G be a finite group and H a subgroup of G. Recall that H is said to be aTI-subgroup ofG ifHg∩H = 1 or H for each b∈ G. In this note, we prove that if all non-nilpotent subgroups of a finite non-nilpotent group G are TI-subgroups, then G is soluble, and all non-nilpotent subgroups of G are normal.
基金supported by National Natural Science Foundation of China(Grant Nos.11371335 and 11301227)Wu Wen-Tsun Key Laboratory of Mathematics,USTC,Chinese Academy of Sciences,and Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(Grant No.2010T2J12)
文摘Let A be a subgroup of a finite group G. We say that A is a generalized CAP-subgroup of G if for each chief factor H/K of G either A avoids H/K or the following holds:(1) If H/K is non-abelian, then|H :(A ∩H)K | is a p′-number for every p ∈π((A ∩H)K/K);(2) If H/K is a p-group, then |G : NG(K(A ∩H))| is a p-number. In this paper, we use the generalized CAP-subgroup to characterize the structure of finite groups.Some new characterizations of the hypercyclically embedded subgroups of a finite group are obtained and a series of known results are generalized.
基金supported by National Natural Science Foundation of China (Grant Nos. 10771172, 10771180)
文摘Let A be a subgroup of a group G and X be a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we investigate further the influence of X-semipermutability of some subgroups on the structure of finite groups. Some new criteria for a group G to be supersoluble or p-nilpotent are obtained.