In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Speciall...In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Specially, we verify that any complete and stable hypersurface in the hyperbolic space H4(-1) (resp. H5(-1)) with constant mean curvature H satisfying H2 6643 (resp. H2 114785 ) must be compact. It shows that there is no manifold satisfying the conditions of some theorems in [7, 9].展开更多
In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main th...In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main theorem for meromorphic functions with finite growth index which share meromorphic functions(may not be small functions).As its application,we also extend the result of a finite range set with truncated multiplicity.展开更多
We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p...We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p>1,Our analysis reveals that all stable solutions of the equation must be zero for all p>1,Furthermore,finite Morse index solutions must be zero if N≥3 an p≥(N+2+2b)/(N-2).The main tools we use are integral estimates,a Pohozaev type identity and a monotonicity formula.展开更多
A monotonicity formula for stable solutions to a class of weighted semilinear elliptic equations with "negative exponent" is established. It is well known that such a monotonieity formula plays an essential role in ...A monotonicity formula for stable solutions to a class of weighted semilinear elliptic equations with "negative exponent" is established. It is well known that such a monotonieity formula plays an essential role in the study of finite Morse index solutions of equations with "positive exponent". Unlike the positive exponent case, we will see that both the monotonicity formula and the sub-harmonicity play crucial roles in classifying positive finite Morse index solutions to the equations with negative exponent and obtaining sharp results for their asymptotic behaviors.展开更多
In this paper we study normal forms for a class of germs of 1-resonant vector fields on R^n with mutually different eigenvalues which may admit extraneous resonance relations. We give an estimation on the index of fin...In this paper we study normal forms for a class of germs of 1-resonant vector fields on R^n with mutually different eigenvalues which may admit extraneous resonance relations. We give an estimation on the index of finite determinacy from above as well as the essentially simplified polynomial normal forms for such vector fields. In the case that a vector field has a zero eigenvalue, the result leads to an interesting corollary, a linear dependence of the derivatives of the hyperbolic variables on the central variable.展开更多
In this paper,we study the qualitative properties and classification of the solutions to the elliptic equations with Stein-Weiss type convolution part.Firstly,we study the qualitative properties,such as the symmetry,r...In this paper,we study the qualitative properties and classification of the solutions to the elliptic equations with Stein-Weiss type convolution part.Firstly,we study the qualitative properties,such as the symmetry,regularity and asymptotic behavior of the positive solutions.Secondly,we classify the non-positive solutions by proving some Liouville type theorems for the finite Morse index solutions and stable solutions to the nonlocal elliptic equations with double weights.展开更多
基金supported by NSFC (10901067)partially supported by NSFC (10801058) and Hubei Key Laboratory of Mathematical Sciences
文摘In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Specially, we verify that any complete and stable hypersurface in the hyperbolic space H4(-1) (resp. H5(-1)) with constant mean curvature H satisfying H2 6643 (resp. H2 114785 ) must be compact. It shows that there is no manifold satisfying the conditions of some theorems in [7, 9].
基金Supported by National Natural Science Foundation of China(12061041)Jiangxi Provincial Natural Science Foundation(20232BAB201003).
文摘In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main theorem for meromorphic functions with finite growth index which share meromorphic functions(may not be small functions).As its application,we also extend the result of a finite range set with truncated multiplicity.
基金Supported by University of Economics and Law,VNU-HCM。
文摘We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p>1,Our analysis reveals that all stable solutions of the equation must be zero for all p>1,Furthermore,finite Morse index solutions must be zero if N≥3 an p≥(N+2+2b)/(N-2).The main tools we use are integral estimates,a Pohozaev type identity and a monotonicity formula.
基金supported by National Natural Science Foundation of China(Grant Nos.11171092 and 11271133)Innovation Scientists and Technicians Troop Construction Projects of Henan Province(Grant No.114200510011)
文摘A monotonicity formula for stable solutions to a class of weighted semilinear elliptic equations with "negative exponent" is established. It is well known that such a monotonieity formula plays an essential role in the study of finite Morse index solutions of equations with "positive exponent". Unlike the positive exponent case, we will see that both the monotonicity formula and the sub-harmonicity play crucial roles in classifying positive finite Morse index solutions to the equations with negative exponent and obtaining sharp results for their asymptotic behaviors.
文摘In this paper we study normal forms for a class of germs of 1-resonant vector fields on R^n with mutually different eigenvalues which may admit extraneous resonance relations. We give an estimation on the index of finite determinacy from above as well as the essentially simplified polynomial normal forms for such vector fields. In the case that a vector field has a zero eigenvalue, the result leads to an interesting corollary, a linear dependence of the derivatives of the hyperbolic variables on the central variable.
基金supported by National Natural Science Foundation of China(Grant Nos.11971436 and 12011530199)Natural Science Foundation of Zhejiang(Grant No.LD19A010001)。
文摘In this paper,we study the qualitative properties and classification of the solutions to the elliptic equations with Stein-Weiss type convolution part.Firstly,we study the qualitative properties,such as the symmetry,regularity and asymptotic behavior of the positive solutions.Secondly,we classify the non-positive solutions by proving some Liouville type theorems for the finite Morse index solutions and stable solutions to the nonlocal elliptic equations with double weights.