Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are ...Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.展开更多
This paper deals with the blow up properties of the positive solutions to the nonlocal degenerate semilinear parabolic equation u t-(x αu x) x=∫ a 0f(u) d x in (0,a)×(0,T) under homogeneous Dirichl...This paper deals with the blow up properties of the positive solutions to the nonlocal degenerate semilinear parabolic equation u t-(x αu x) x=∫ a 0f(u) d x in (0,a)×(0,T) under homogeneous Dirichlet conditions. The local existence and uniqueness of classical solution are established. Under appropriate hypotheses, the global existence and blow up in finite time of positive solutions are obtained. It is also proved that the blow up set is almost the whole domain. This differs from the local case. Furthermore, the blow up rate is precisely determined for the special case: f(u)=u p,p>1.展开更多
基金partially supported by Grant No.DFNI I-02/9 of the Bulgarian Science Fund
文摘Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.
文摘This paper deals with the blow up properties of the positive solutions to the nonlocal degenerate semilinear parabolic equation u t-(x αu x) x=∫ a 0f(u) d x in (0,a)×(0,T) under homogeneous Dirichlet conditions. The local existence and uniqueness of classical solution are established. Under appropriate hypotheses, the global existence and blow up in finite time of positive solutions are obtained. It is also proved that the blow up set is almost the whole domain. This differs from the local case. Furthermore, the blow up rate is precisely determined for the special case: f(u)=u p,p>1.