In this paper, the existence and nonexistence of finite travelling waves (FTWs) for a semilinear degenerate reaction-diffusion system (u<sub>i</sub><sup>αi</sup>t=u<sub>ixx</sub>...In this paper, the existence and nonexistence of finite travelling waves (FTWs) for a semilinear degenerate reaction-diffusion system (u<sub>i</sub><sup>αi</sup>t=u<sub>ixx</sub>-multiply from j=1 to N u<sub>j</sub><sup>mij</sup>, x∈R, t】0,i=1,. . . ,N (Ⅰ) is studied. where 0【a<sub>i</sub>【1. mij≥0 and sum from j=1 to N mij】0, i, j=1, . . . ,N .Necessary and sufficient conditions on existence and large time behaviours of FTWs of (Ⅰ) are obtained by using the matrix theory. Schauder’s fixed point theorem, and upper and lower solutious method.展开更多
基金Project supported by the Postdoctoral Science Foundation of China the Henan Province Natural Science Foundation of China
文摘In this paper, the existence and nonexistence of finite travelling waves (FTWs) for a semilinear degenerate reaction-diffusion system (u<sub>i</sub><sup>αi</sup>t=u<sub>ixx</sub>-multiply from j=1 to N u<sub>j</sub><sup>mij</sup>, x∈R, t】0,i=1,. . . ,N (Ⅰ) is studied. where 0【a<sub>i</sub>【1. mij≥0 and sum from j=1 to N mij】0, i, j=1, . . . ,N .Necessary and sufficient conditions on existence and large time behaviours of FTWs of (Ⅰ) are obtained by using the matrix theory. Schauder’s fixed point theorem, and upper and lower solutious method.