In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy ...In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.展开更多
With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium...With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium theory is commonly employed to model geothermal reservoirs in EGS,Hot Dry Rock(HDR)presents a challenge as it consists of impermeable granite with zero porosity,potentially distorting the physical interpretation.To address this,the Lattice Boltzmann Method(LBM)is employed to simulate CO_(2)flow within geothermal reservoirs and the Finite Volume Method(FVM)to solve the energy conservation equation for temperature distribution.This combined method of LBM and FVM is imple-mented using MATLAB.The results showed that the Reynolds numbers(Re)of 3,000 and 8,000 lead to higher heat extraction rates from geothermal reservoirs.However,higher Re values may accelerate thermal breakthrough,posing challenges to EGS operation.Meanwhile,non-equilibrium of density in fractures becomes more pronounced during the system's life cycle,with non-Darcy's law becoming significant at Re values of 3,000 and 8,000.Density stratification due to buoyancy effects significantly impacts temperature distribution within geothermal reservoirs,with buoyancy effects at Re=100 under gravitational influence being noteworthy.Larger Re values(3,000 and 8,000)induce stronger forced convection,leading to more uniform density distribution.The addition of proppant negatively affects heat transfer performance in geothermal reservoirs,especially in single fractures.Practical engineering considerations should determine the quantity of proppant through detailed numerical simulations.展开更多
Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellit...Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.展开更多
We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order ...We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order presently)is achieved,thanks to polynomial recon-structions while stability is provided with an a posteriori MOOD method which controls the cell polynomial degree for eliminating non-physical oscillations in the vicinity of dis-continuities.We supplemented this scheme with a stencil construction allowing to reduce even further the numerical dissipation.The stencil is shifted away from troubles(shocks,discontinuities,etc.)leading to less oscillating polynomial reconstructions.Experimented on linear,Burgers',and Euler equations,we demonstrate that the adaptive stencil technique manages to retrieve smooth solutions with optimal order of accuracy but also irregular ones without spurious oscillations.Moreover,we numerically show that the approach allows to reduce the dissipation still maintaining the essentially non-oscillatory behavior.展开更多
A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined wit...A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy.展开更多
In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in ...In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.展开更多
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal d...A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.展开更多
A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model i...A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model is discretized by semi-implicit finite volume method, in that the free surface is semi-implicit and the bottom friction is implicit, thereby removing stability limitations associated with the surface gravity wave and friction. The remaining terms in the momentum equations are discretized explicitly by integral finite volume method and second-order Adams-Bashforth method. Tidal flow in the polar quadrant with known analytic solution is employed to test the proposed model. Finally, the performance of the present model to simulate tidal flow in a geometrically complex domain is examined by simulation of tidal currents in the Pearl River Estuary.展开更多
A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order in...A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations,with the least nodes similar to the standard three-point schemes,that is,the number of the nodes needed is equal to unity plus the face-number of the control volume.For instance,in the two-dimensional(2-D)case,only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized,respectively.The PFV scheme is applied on a number of 1-D linear and nonlinear problems,2-D and 3-D flow model equations.Comparing with other standard three-point schemes,the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme(UDS).Its numerical accuracies are also higher than the second-order central scheme(CDS),the power-law scheme(PLS)and QUICK scheme.展开更多
A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm i...A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm is improved to the level of finite volume method for most parts of the flow filed arc covered with grid cells. Moreover, the hybrid method is flexible to deal with the configurations as clouds of points are used to cover the region adjacent to the bodies. Mirror satellites and mirror grid cells arc introduced to the interface to accomplish data communication between the different parts of the flow field. The Euler Equations arc spatially discretized with finite volume method and gridless method in mesh and clouds of points respectively, and an explicit four-stage Runge-Kutta scheme is utilized to reach the steady-state solution. Internal flows in channels and external flows over airfoils arc investigated with hybrid method, and the solutions arc comparad to those using pure finite volume method and pure gridless method. Numerical examples show that the hybrid algorithm captures the shock waves accurately, and it is as efficient as fmite volume method.展开更多
The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Ro...The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.展开更多
A method to simulate processes of forging and subsequent heat treatment of an axial symmetric rod is formulated in eulerian description and the feasibility is investigated. This method uses finite volume mushes for t...A method to simulate processes of forging and subsequent heat treatment of an axial symmetric rod is formulated in eulerian description and the feasibility is investigated. This method uses finite volume mushes for troching material deformation and an automatically refined facet surface to accurately trace the free surface of the deforming material.In the method,the deforming work piece flows through fixed finite volume meshes using eulerian formulation to describe the conservation laws,Fixed finite volume meshing is particularly suitable for large three-dimensional deformation such as forging because remeshing techniques are not required, which are commonly considered to be the main bottelencek in the ssimulations of large defromation by using the finite element method,By means of this finite volume method, an approach has been developed in the framework of 'metallo-thermo-mechanics' to simulate metallic structure, temperature and stress/strain coupled in the heat treatment process.In a first step of simulation, the heat treatment solver is limited in small deformation hypothesis,and un- coupled with forging. The material is considered as elastic-plastic and takes into account of strain, strain rate and temperature effects on the yield stress.Heat generation due to deformation,heat con- duction and thermal stress are considered.Temperature - dependent phase transformation,stress-in- duced phase transformation,latent heat,transformation stress and strain are included.These ap- proaches are implemented into the commerical commercial computer program MSC/SuperForge and a verification example with experimental date is given as comparison.展开更多
A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid. The MCV scheme defines 16 degrees of freedom (DOFs) within each element to ...A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid. The MCV scheme defines 16 degrees of freedom (DOFs) within each element to build a 2D cubic reconstruction polynomial. The time evolution equations for DOFs are derived from constraint conditions on moments of line-integrated averages (LIA), point values (PV), and values of first-order derivatives (DV). The Yin-Yang grid eliminates polar singularities and results in a quasi-uniform mesh. A limiting projection is designed to remove nonphysical oscillations around discontinuities. Our model was tested against widely used benchmarks; the competitive results reveal that the model is accurate and promising for developing general circulation models.展开更多
The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-...The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.展开更多
The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-paramet...The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-parameter scheme offering up to the 6th accuracy order achieved on the Cartesian meshes. An adaptive dissipation is added for the numerical treatment of possible discontinuities. The scheme properties are studied on a series of test cases, its efficiency is demonstrated at simulating the noise suppression in resonance-type liners.展开更多
A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element m...A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.展开更多
The finite volume method has been successfully applied in several engineering fields and has shown outstanding performance in fluid dynamics simulation. In this paper, the general framework for the simulation ofnear-w...The finite volume method has been successfully applied in several engineering fields and has shown outstanding performance in fluid dynamics simulation. In this paper, the general framework for the simulation ofnear-wellbore systems using the finite volume method is described. The mathematical model and the numerical model developed by the authors are presented and discussed. A radial geometry in the vertical plane was implemented so as to thoroughly describe near-wellbore phenomena. The model was then used to simulate injection tests in an oil reservoir through a horizontal well and proved very powerful to correctly reproduce the transient pressure behavior. The reason for this is the robustness of the method, which is independent of the gridding options because the discretization is performed in the physical space. The model is able to describe the phenomena taking place in the reservoir even in complex situations, i.e. in the presence of heterogeneities and permeability barriers, demonstrating the flexibility of the finite volume method when simulating non-conventional tests. The results are presented in comparison with those obtained with the finite difference numerical approach and with analytical methods, if possible.展开更多
Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were de...Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4.展开更多
This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equat...This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equations.The unknown function and its gradient can be accurately reconstructed using high order optimal recovery based on radial basis functions.The methodology proposed is applied to the noise removal problem in functional surfaces and images.Numerical results demonstrate the effectiveness of the new numerical approach and provide experimental order of convergence.展开更多
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno...Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.展开更多
基金supported by the NSFC grant 12101128supported by the NSFC grant 12071392.
文摘In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.
基金supported by the Hebei Province Graduate Innovation Funding Project(CXZZBS2022029).
文摘With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium theory is commonly employed to model geothermal reservoirs in EGS,Hot Dry Rock(HDR)presents a challenge as it consists of impermeable granite with zero porosity,potentially distorting the physical interpretation.To address this,the Lattice Boltzmann Method(LBM)is employed to simulate CO_(2)flow within geothermal reservoirs and the Finite Volume Method(FVM)to solve the energy conservation equation for temperature distribution.This combined method of LBM and FVM is imple-mented using MATLAB.The results showed that the Reynolds numbers(Re)of 3,000 and 8,000 lead to higher heat extraction rates from geothermal reservoirs.However,higher Re values may accelerate thermal breakthrough,posing challenges to EGS operation.Meanwhile,non-equilibrium of density in fractures becomes more pronounced during the system's life cycle,with non-Darcy's law becoming significant at Re values of 3,000 and 8,000.Density stratification due to buoyancy effects significantly impacts temperature distribution within geothermal reservoirs,with buoyancy effects at Re=100 under gravitational influence being noteworthy.Larger Re values(3,000 and 8,000)induce stronger forced convection,leading to more uniform density distribution.The addition of proppant negatively affects heat transfer performance in geothermal reservoirs,especially in single fractures.Practical engineering considerations should determine the quantity of proppant through detailed numerical simulations.
基金supported by the National Natural Science Foundation of China(41922027,4214200052)by the Macao Foundation+1 种基金by the Pre-research Project on Civil Aerospace Technologies No.D020308/D020303 funded by China National Space Administrationby the Macao Science and Technology Development Fund,grant No.0001/2019/A1。
文摘Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.
基金support by FEDER-Fundo Europeu de Desenvolvimento Regional,through COMPETE 2020-Programa Operational Fatores de Competitividade,and the National Funds through FCT-Fundacao para a Ciencia e a Tecnologia,project no.UID/FIS/04650/2019support by FEDER-Fundo Europeu de Desenvolvimento Regional,through COMPETI E 2020-Programa Operacional Fatores de Competitividade,and the National Funds through FCT-Fundacao para a Ciencia e a Tecnologia,project no.POCI-01-0145-FEDER-028118
文摘We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order presently)is achieved,thanks to polynomial recon-structions while stability is provided with an a posteriori MOOD method which controls the cell polynomial degree for eliminating non-physical oscillations in the vicinity of dis-continuities.We supplemented this scheme with a stencil construction allowing to reduce even further the numerical dissipation.The stencil is shifted away from troubles(shocks,discontinuities,etc.)leading to less oscillating polynomial reconstructions.Experimented on linear,Burgers',and Euler equations,we demonstrate that the adaptive stencil technique manages to retrieve smooth solutions with optimal order of accuracy but also irregular ones without spurious oscillations.Moreover,we numerically show that the approach allows to reduce the dissipation still maintaining the essentially non-oscillatory behavior.
基金Project supported by the National Natural Science Foundation of China(No.12072158)。
文摘A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy.
基金the Scientific Research Fund of Beijing Normal University(Grant No.28704-111032105)the Start-up Research Fund from BNU-HKBU United International College(Grant No.R72021112)+2 种基金The research of Guanghui Hu was partially supported by the FDCT of the Macao S.A.R.(0082/2020/A2)the National Natural Science Foundation of China(Grant Nos.11922120,11871489)the Multi-Year Research Grant(2019-00154-FST)of University of Macao,and a Grant from Department of Science and Technology of Guangdong Province(2020B1212030001).
文摘In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.
基金The Major State Basic Research Program of China under contract No. 2012CB417002the National Natural Science Foundation of China under contract Nos 50909065 and 51109039
文摘A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.50909065 and 51109039)the Major State Basic Research Program of China(973 Program,Grant No.2012CB417002)
文摘A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model is discretized by semi-implicit finite volume method, in that the free surface is semi-implicit and the bottom friction is implicit, thereby removing stability limitations associated with the surface gravity wave and friction. The remaining terms in the momentum equations are discretized explicitly by integral finite volume method and second-order Adams-Bashforth method. Tidal flow in the polar quadrant with known analytic solution is employed to test the proposed model. Finally, the performance of the present model to simulate tidal flow in a geometrically complex domain is examined by simulation of tidal currents in the Pearl River Estuary.
基金The project supported by the National Natural Science Foundation of China(10272106,10372106)
文摘A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations,with the least nodes similar to the standard three-point schemes,that is,the number of the nodes needed is equal to unity plus the face-number of the control volume.For instance,in the two-dimensional(2-D)case,only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized,respectively.The PFV scheme is applied on a number of 1-D linear and nonlinear problems,2-D and 3-D flow model equations.Comparing with other standard three-point schemes,the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme(UDS).Its numerical accuracies are also higher than the second-order central scheme(CDS),the power-law scheme(PLS)and QUICK scheme.
基金Aeronautical Science Foundation of China (02A52002), National Natural Science Foundation of China(10372043)
文摘A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm is improved to the level of finite volume method for most parts of the flow filed arc covered with grid cells. Moreover, the hybrid method is flexible to deal with the configurations as clouds of points are used to cover the region adjacent to the bodies. Mirror satellites and mirror grid cells arc introduced to the interface to accomplish data communication between the different parts of the flow field. The Euler Equations arc spatially discretized with finite volume method and gridless method in mesh and clouds of points respectively, and an explicit four-stage Runge-Kutta scheme is utilized to reach the steady-state solution. Internal flows in channels and external flows over airfoils arc investigated with hybrid method, and the solutions arc comparad to those using pure finite volume method and pure gridless method. Numerical examples show that the hybrid algorithm captures the shock waves accurately, and it is as efficient as fmite volume method.
基金This paper was supported bythe Natural Science Foundation of Shandong Province (Grant No.y2004f13)
文摘The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.
文摘A method to simulate processes of forging and subsequent heat treatment of an axial symmetric rod is formulated in eulerian description and the feasibility is investigated. This method uses finite volume mushes for troching material deformation and an automatically refined facet surface to accurately trace the free surface of the deforming material.In the method,the deforming work piece flows through fixed finite volume meshes using eulerian formulation to describe the conservation laws,Fixed finite volume meshing is particularly suitable for large three-dimensional deformation such as forging because remeshing techniques are not required, which are commonly considered to be the main bottelencek in the ssimulations of large defromation by using the finite element method,By means of this finite volume method, an approach has been developed in the framework of 'metallo-thermo-mechanics' to simulate metallic structure, temperature and stress/strain coupled in the heat treatment process.In a first step of simulation, the heat treatment solver is limited in small deformation hypothesis,and un- coupled with forging. The material is considered as elastic-plastic and takes into account of strain, strain rate and temperature effects on the yield stress.Heat generation due to deformation,heat con- duction and thermal stress are considered.Temperature - dependent phase transformation,stress-in- duced phase transformation,latent heat,transformation stress and strain are included.These ap- proaches are implemented into the commerical commercial computer program MSC/SuperForge and a verification example with experimental date is given as comparison.
基金supported by National Key Technology R&D Program of China (Grant No. 2012BAC22B01)Natural Science Foundation of China (Grant Nos. 10902116, 40805045, and 41175095)Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (Grant No. 24560187)
文摘A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid. The MCV scheme defines 16 degrees of freedom (DOFs) within each element to build a 2D cubic reconstruction polynomial. The time evolution equations for DOFs are derived from constraint conditions on moments of line-integrated averages (LIA), point values (PV), and values of first-order derivatives (DV). The Yin-Yang grid eliminates polar singularities and results in a quasi-uniform mesh. A limiting projection is designed to remove nonphysical oscillations around discontinuities. Our model was tested against widely used benchmarks; the competitive results reveal that the model is accurate and promising for developing general circulation models.
基金Project supported by the National Key Project, China (Grant No. GJXM92579).
文摘The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.
基金Russian Foundation of Basic Research(No. 04-01-08034, 06-01-00293-a)
文摘The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-parameter scheme offering up to the 6th accuracy order achieved on the Cartesian meshes. An adaptive dissipation is added for the numerical treatment of possible discontinuities. The scheme properties are studied on a series of test cases, its efficiency is demonstrated at simulating the noise suppression in resonance-type liners.
文摘A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.
文摘The finite volume method has been successfully applied in several engineering fields and has shown outstanding performance in fluid dynamics simulation. In this paper, the general framework for the simulation ofnear-wellbore systems using the finite volume method is described. The mathematical model and the numerical model developed by the authors are presented and discussed. A radial geometry in the vertical plane was implemented so as to thoroughly describe near-wellbore phenomena. The model was then used to simulate injection tests in an oil reservoir through a horizontal well and proved very powerful to correctly reproduce the transient pressure behavior. The reason for this is the robustness of the method, which is independent of the gridding options because the discretization is performed in the physical space. The model is able to describe the phenomena taking place in the reservoir even in complex situations, i.e. in the presence of heterogeneities and permeability barriers, demonstrating the flexibility of the finite volume method when simulating non-conventional tests. The results are presented in comparison with those obtained with the finite difference numerical approach and with analytical methods, if possible.
文摘Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4.
基金supported by PRIN-MIUR-Cofin 2006by University of Bologna"Funds for selected research topics"
文摘This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equations.The unknown function and its gradient can be accurately reconstructed using high order optimal recovery based on radial basis functions.The methodology proposed is applied to the noise removal problem in functional surfaces and images.Numerical results demonstrate the effectiveness of the new numerical approach and provide experimental order of convergence.
基金King Mongkut’s University of Technology North Bangkok (KMUTNB)the Office of the Higher Education Commission (OHEC)the National Metal and Materials Technology Center (MTEC) for supporting this research work
文摘Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.