The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was devel...The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.展开更多
Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and ...Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and with the nucleus removed were developed and validatedusing published experimental and clinical data. Then the models with a stainless steel nucleusprosthesis implanted and with polymer nucleus prostheses of various properties implanted were usedfor the 3D finite-element biomechanical analysis. All the above simulation and analysis were carriedout for the L4/L5 disc under a human worst--daily compression load of 2000 N. The results show thatthe polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanicalconsideration.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor...Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.展开更多
Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a...Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.展开更多
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn...BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but...Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.展开更多
Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but t...Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such...The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.展开更多
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive...Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.展开更多
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic ...Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.展开更多
Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwa...Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwater flow has centered on unsaturated-saturated zones,often overlooking the impact of the capillary fringe.In this study,we introduce a steady-state two-dimensional model that integrates the capillary fringe into a 2-D numerical solution.Our novel approach employs the potential form of the Richards equation,facilitating the determination of boundaries,pressures,and velocities across different ground surface zones.We utilized a two-dimensional Freefem++finite element model to compute the stationary solution.The validation of the model was conducted using experimental data.We employed the OFAT(One_Factor-At-Time)method to identify the most sensitive soil parameters and understand how changes in these parameters may affect the behavior and water dynamics of the capillary fringe.The results emphasize the role of hydraulic conductivity as a key parameter influencing capillary fringe shape and dynamics.Velocity values within the capillary fringe suggest the prevalence of horizontal flow.By variation of the water table level and the incoming flow q0,we have shown the correlation between water table elevation and the upper limit of the capillary fringe.展开更多
Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID eff...Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was proposed.The digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional area.Each of these three parts was separately modeled.Using the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using VHDL-AMS.In the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area models.Furthermore,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital IC.TID experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose point.This confirms the practicality and accuracy of the proposed modeling method.The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
基金Supported by the National Natural Science Foundation of China(60801050)the Excellent Talent Fund of Beijing(2011)Excellent Young Scholars Research Fund of Beijing Institute ofTechnology(2012)
文摘The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.
文摘Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and with the nucleus removed were developed and validatedusing published experimental and clinical data. Then the models with a stainless steel nucleusprosthesis implanted and with polymer nucleus prostheses of various properties implanted were usedfor the 3D finite-element biomechanical analysis. All the above simulation and analysis were carriedout for the L4/L5 disc under a human worst--daily compression load of 2000 N. The results show thatthe polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanicalconsideration.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金supported by the National Natural Science Foundation of China(No.41104068)the Deep Exploration in China,Sino Probe-03-05
文摘Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.
基金the National Natural Science Foundation of China(Grant No.42020104006).
文摘Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.
基金Supported by Discipline Advancement Program of Shanghai Fourth People’s Hospital,No.SY-XKZT-2020-2013.
文摘BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金supported by the Research Council of Norway under contracts 223252/F50 and 300844/F50the Trond Mohn Foundation。
文摘Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.
基金funding support from the science and technology innovation Program of Hunan Province(Grant No.2023RC1017)Hunan Provincial Postgraduate Research and Innovation Project(Grant No.CX20220109)National Natural Science Foundation of China Youth Fund(Grant No.52208378).
文摘Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金financially supported by the National Natural Science Foundation of China(No.41204055,41164003,and 41104074)Opening Project(No.SMIL-2014-06) of Hubei Subsurface Multi-scale Imaging Lab(SMIL),China University of Geosciences(Wuhan)
文摘The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.
基金support from the National Key R&D plan(Grant No.2022YFC3004303)the National Natural Science Foundation of China(Grant No.42107161)+3 种基金the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04)the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(sklhse-2023-C-01)the Open Research Fund Program of Key Laboratory of the Hydrosphere of the Ministry of Water Resources(mklhs-2023-04)the China Three Gorges Corporation(XLD/2117).
文摘Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
基金supported in part by the National Key Research and Development Program of China(2022YFB3305300)the National Natural Science Foundation of China(62173178).
文摘Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.
文摘Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwater flow has centered on unsaturated-saturated zones,often overlooking the impact of the capillary fringe.In this study,we introduce a steady-state two-dimensional model that integrates the capillary fringe into a 2-D numerical solution.Our novel approach employs the potential form of the Richards equation,facilitating the determination of boundaries,pressures,and velocities across different ground surface zones.We utilized a two-dimensional Freefem++finite element model to compute the stationary solution.The validation of the model was conducted using experimental data.We employed the OFAT(One_Factor-At-Time)method to identify the most sensitive soil parameters and understand how changes in these parameters may affect the behavior and water dynamics of the capillary fringe.The results emphasize the role of hydraulic conductivity as a key parameter influencing capillary fringe shape and dynamics.Velocity values within the capillary fringe suggest the prevalence of horizontal flow.By variation of the water table level and the incoming flow q0,we have shown the correlation between water table elevation and the upper limit of the capillary fringe.
基金This work was supported by the special fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR2011).
文摘Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was proposed.The digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional area.Each of these three parts was separately modeled.Using the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using VHDL-AMS.In the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area models.Furthermore,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital IC.TID experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose point.This confirms the practicality and accuracy of the proposed modeling method.The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.