Finite-temperature ductility-brittleness and electronic structures of Al_(3)Sc,Al_(2)Sc and AlSc are studied comparatively by first-principles calculations and ab initio molecular dynamics.Results show that Al_(3)Sc a...Finite-temperature ductility-brittleness and electronic structures of Al_(3)Sc,Al_(2)Sc and AlSc are studied comparatively by first-principles calculations and ab initio molecular dynamics.Results show that Al_(3)Sc and Al_(2)Sc are brittle at both ground state and finite temperatures,while AlSc possesses a significantly superior ductility.At ground state,AlSc is ductile from Pugh's and Poisson's criteria,while it is brittle in Pettifor's model.The ductility of all Al_(3)Sc,Al_(2)Sc and AISc improves greatly with the elevated temperature.Especially,the Cauchy pressure of AlSc undergoes a transition from negative to positive.At T>600 K,AlSc is unequivocally classified as ductile from all criteria considered.In all compounds,the Al-Al bond originated from s-p and p-p orbital hybridizations,and the Al-Sc bond dominated by p-d covalent hybridization,are the first and second strongest chemical bonds,respectively.To explain the difference in mechanical properties,the mean bond strength(MBS)is introduced in this work.The weaker Al-Al bond in AlSc,leading to a smaller MBS,could be the origin of the softer elastic stiffness and superior intrinsic ductility.The longer length of the Al-Al bond in AlSc is responsible for its weaker bond strength.Furthermore,the enhanced metallicity of the Al-Al bond in AlSc would also contribute to its exceptional ductility.The longer length of the Al-Al bond in AISc is responsible for its weaker bond strength.Furthermore,the enhanced metallicity of the Al-Al bond in AlSc would also contribute to its exceptional ductility.展开更多
Quantum fluctuations from frustration can trigger quantum spin liquids(QSLs) at zero temperature.However, it is unclear how thermal fluctuations affect a QSL. We employ state-of-the-art tensor network-based methods to...Quantum fluctuations from frustration can trigger quantum spin liquids(QSLs) at zero temperature.However, it is unclear how thermal fluctuations affect a QSL. We employ state-of-the-art tensor network-based methods to explore the ground state and thermodynamic properties of the spin-1=2 kagomé Heisenberg antiferromagnet(KHA). Its ground state is shown to be consistent with a gapless QSL by observing the absence of zero-magnetization plateau as well as the algebraic behaviors of susceptibility and specific heat at low temperatures, respectively. We show that there exists an algebraic paramagnetic liquid(APL) that possesses both the paramagnetic properties and the algebraic behaviors inherited from the QSL. The APL is induced under the interplay between quantum fluctuations from geometrical frustration and thermal fluctuations. By studying the temperature-dependent behaviors of specific heat and magnetic susceptibility, a finite-temperature phase diagram in a magnetic field is suggested, where various phases are identified. This present study gains useful insight into the thermodynamic properties of the spin-1/2 KHA with or without a magnetic field and is helpful for relevant experimental studies.展开更多
Within the framework of finite temperature field theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential The effective...Within the framework of finite temperature field theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient.The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively.展开更多
We used the Cornwall, Jackiw and Tomboulis (CJT) resummation scheme to study nuclear matter. In the CJT formalism the meson propagators are treated as the bare propagators and the the higher order loop corrections o...We used the Cornwall, Jackiw and Tomboulis (CJT) resummation scheme to study nuclear matter. In the CJT formalism the meson propagators are treated as the bare propagators and the the higher order loop corrections of the thermodynamic potential are evaluated at the Hartree approximation, while the vacuum fluctuations are ignored. Under these treatments in the CJT formalism we derived exact mean-field theory (MFT) results for the nuclear matter. The results are thermodynamically consistent, and our study indicates that the MFT result is the lowest order resummation result in the CJT resummation scheme. The relation between CJT formalism and MFT is clearly presented through the calculations.展开更多
We investigate theoretically the quantum discord dynamics of a two-qubit composite system subject to a common finite-temperature reservoir by solving the Born-Markovian master equation analytically.The ultimate quantu...We investigate theoretically the quantum discord dynamics of a two-qubit composite system subject to a common finite-temperature reservoir by solving the Born-Markovian master equation analytically.The ultimate quantum discord,however,exhibits a relatively high stable value associated with the reservoir temperature despite the permanent disappearance of entanglement simultaneously.Further analysis shows that the unique characteristic depends strongly on the off-diagonal non-zero elements of the density matrix.Our result manifests the greater robustness of quantum discord compared with entanglement,which may be helpful in quantum-information technologies.展开更多
In this paper, we study the static dielectric function and interaction potential in strong coupling limit with AdS/CFT correspondence. The dielectric function is depressed compared with that in weak coupling. The inte...In this paper, we study the static dielectric function and interaction potential in strong coupling limit with AdS/CFT correspondence. The dielectric function is depressed compared with that in weak coupling. The interaction potential then presents a weaker screening characteristics in strong coupling, which indicates a smaller Debye mass compared with weak coupling.展开更多
Using the mean-field approximation, we study the chiral soliton within the linear sigma model in a thermal vacuum. The chiral soliton equations with different boundary conditions are solved at finite temperatures and ...Using the mean-field approximation, we study the chiral soliton within the linear sigma model in a thermal vacuum. The chiral soliton equations with different boundary conditions are solved at finite temperatures and densities. The solitons are discussed before and after chiral restoration. We find that the system has soliton solutions even after chiral restoration, and that they are very different from those before chiral restoration, which indicates that the quarks are still bound after chiral restoration.展开更多
Deconfinement phase transition is studied in the FL model at finite temperature and chemical potential. At MFT approximation, phase transition can only be first order in the whole μ-T phase plane. Using a Landau expa...Deconfinement phase transition is studied in the FL model at finite temperature and chemical potential. At MFT approximation, phase transition can only be first order in the whole μ-T phase plane. Using a Landau expansion, we further study the phase transition order and the possible phase diagram of deconfinement. We discuss the possibilities of second order phase transitions in the FL model. From our analysis, if the cubic term in the Landau expansion could be cancelled by the higher order fluctuations, second order phase transition may occur. By an ansatz of the Landau parameters, we obtain a possible phase diagram with both the first and second order phase transitions, including the tri-critical point which is similar to that of the chiral phase transition.展开更多
In this work, we make the first study of electroweak baryogenesis(EWBG) based on the LHC data in the CP-violating next-to-minimal supersymmetric model(NMSSM) where a strongly first order electroweak phase transit...In this work, we make the first study of electroweak baryogenesis(EWBG) based on the LHC data in the CP-violating next-to-minimal supersymmetric model(NMSSM) where a strongly first order electroweak phase transition(EWPT) is obtained in the general complex Higgs potential. With representative benchmark points which pass the current LEP and LHC constraints, we demonstrate the structure of EWPT for those points and how a strongly first order EWPT is obtained in the complex NMSSM where the resulting gravitational wave production properties are found to be within the reaches of future space-based interferometers like BBO and Ultimate-DECIGO. We further calculate the generated baryon asymmetries where the CP violating sources are(1): higgsino-singlino dominated,(2): higgsino-gaugino dominated or(3): from both sources. It is shown that all three representing scenarios could evade the strong constraints set by various electric dipole moments(EDM) searches where cancellations among the EDM contributions occur at the tree level(higgsino-singlino dominated) or loop level(higgsino-gaugino dominated).The 125 GeV SM like Higgs can be either the second lightest neutral Higgs H_2 or the third lightest neutral Higgs H_3. Finally, we comment on the future direct and indirect probe of CPV in the Higgs sector from the collider and EDM experiments.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFB3504401)。
文摘Finite-temperature ductility-brittleness and electronic structures of Al_(3)Sc,Al_(2)Sc and AlSc are studied comparatively by first-principles calculations and ab initio molecular dynamics.Results show that Al_(3)Sc and Al_(2)Sc are brittle at both ground state and finite temperatures,while AlSc possesses a significantly superior ductility.At ground state,AlSc is ductile from Pugh's and Poisson's criteria,while it is brittle in Pettifor's model.The ductility of all Al_(3)Sc,Al_(2)Sc and AISc improves greatly with the elevated temperature.Especially,the Cauchy pressure of AlSc undergoes a transition from negative to positive.At T>600 K,AlSc is unequivocally classified as ductile from all criteria considered.In all compounds,the Al-Al bond originated from s-p and p-p orbital hybridizations,and the Al-Sc bond dominated by p-d covalent hybridization,are the first and second strongest chemical bonds,respectively.To explain the difference in mechanical properties,the mean bond strength(MBS)is introduced in this work.The weaker Al-Al bond in AlSc,leading to a smaller MBS,could be the origin of the softer elastic stiffness and superior intrinsic ductility.The longer length of the Al-Al bond in AlSc is responsible for its weaker bond strength.Furthermore,the enhanced metallicity of the Al-Al bond in AlSc would also contribute to its exceptional ductility.The longer length of the Al-Al bond in AISc is responsible for its weaker bond strength.Furthermore,the enhanced metallicity of the Al-Al bond in AlSc would also contribute to its exceptional ductility.
基金supported in part by the National Key R&D Program of China (2018YFA0305800)the National Natural Science Foundation of China (14474279 and 11834014)+5 种基金and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB28000000 and XDB07010100)SJR was supported by ERC AdG OSYRIS (ERC-2013-AdG Grant No. 339106)Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO No. FIS201679508-P, SEVERO OCHOA No. SEV-2015-0522)Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program)Fundació Privada Cellex, EU FETPRO QUIC (H2020-FETPROACT2014 No. 641122)the National Science Centre, and PolandSymfonia Grant No. 2016/20/W/ST4/00314
文摘Quantum fluctuations from frustration can trigger quantum spin liquids(QSLs) at zero temperature.However, it is unclear how thermal fluctuations affect a QSL. We employ state-of-the-art tensor network-based methods to explore the ground state and thermodynamic properties of the spin-1=2 kagomé Heisenberg antiferromagnet(KHA). Its ground state is shown to be consistent with a gapless QSL by observing the absence of zero-magnetization plateau as well as the algebraic behaviors of susceptibility and specific heat at low temperatures, respectively. We show that there exists an algebraic paramagnetic liquid(APL) that possesses both the paramagnetic properties and the algebraic behaviors inherited from the QSL. The APL is induced under the interplay between quantum fluctuations from geometrical frustration and thermal fluctuations. By studying the temperature-dependent behaviors of specific heat and magnetic susceptibility, a finite-temperature phase diagram in a magnetic field is suggested, where various phases are identified. This present study gains useful insight into the thermodynamic properties of the spin-1/2 KHA with or without a magnetic field and is helpful for relevant experimental studies.
基金supported by National Natural Science Foundation of China under Grant Nos.10675052,10575043,and 10747135
文摘Within the framework of finite temperature field theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient.The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively.
基金supported by National Natural Science Foundation of China (Nos.10905018,10875050)
文摘We used the Cornwall, Jackiw and Tomboulis (CJT) resummation scheme to study nuclear matter. In the CJT formalism the meson propagators are treated as the bare propagators and the the higher order loop corrections of the thermodynamic potential are evaluated at the Hartree approximation, while the vacuum fluctuations are ignored. Under these treatments in the CJT formalism we derived exact mean-field theory (MFT) results for the nuclear matter. The results are thermodynamically consistent, and our study indicates that the MFT result is the lowest order resummation result in the CJT resummation scheme. The relation between CJT formalism and MFT is clearly presented through the calculations.
基金supported by the National Basic Research Program of China (Grant No.2012CB921900)the National Natural Science Foundation of China (Grant No.10574166)the Guangdong Natural Science Foundation (Grant No.8151027501000062)
文摘We investigate theoretically the quantum discord dynamics of a two-qubit composite system subject to a common finite-temperature reservoir by solving the Born-Markovian master equation analytically.The ultimate quantum discord,however,exhibits a relatively high stable value associated with the reservoir temperature despite the permanent disappearance of entanglement simultaneously.Further analysis shows that the unique characteristic depends strongly on the off-diagonal non-zero elements of the density matrix.Our result manifests the greater robustness of quantum discord compared with entanglement,which may be helpful in quantum-information technologies.
基金Supported by National Natural Science Foundation of China under Grant No.10947002
文摘In this paper, we study the static dielectric function and interaction potential in strong coupling limit with AdS/CFT correspondence. The dielectric function is depressed compared with that in weak coupling. The interaction potential then presents a weaker screening characteristics in strong coupling, which indicates a smaller Debye mass compared with weak coupling.
基金Supported by National Natural Science Foundation of China(10905018,11275082)
文摘Using the mean-field approximation, we study the chiral soliton within the linear sigma model in a thermal vacuum. The chiral soliton equations with different boundary conditions are solved at finite temperatures and densities. The solitons are discussed before and after chiral restoration. We find that the system has soliton solutions even after chiral restoration, and that they are very different from those before chiral restoration, which indicates that the quarks are still bound after chiral restoration.
基金Supported by National Natural Science Foundation of China(10905018,10875050)
文摘Deconfinement phase transition is studied in the FL model at finite temperature and chemical potential. At MFT approximation, phase transition can only be first order in the whole μ-T phase plane. Using a Landau expansion, we further study the phase transition order and the possible phase diagram of deconfinement. We discuss the possibilities of second order phase transitions in the FL model. From our analysis, if the cubic term in the Landau expansion could be cancelled by the higher order fluctuations, second order phase transition may occur. By an ansatz of the Landau parameters, we obtain a possible phase diagram with both the first and second order phase transitions, including the tri-critical point which is similar to that of the chiral phase transition.
基金Supported by the National Natural Science Foundation of China(11605016,11647307)Basic Science Research gram through the National Research Foundation of Korea(NRF) funded by the Ministry of Education,Science and Technology(NRF-2016R1A2B4008759)the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT(2017H1D3A1A01014046)
文摘In this work, we make the first study of electroweak baryogenesis(EWBG) based on the LHC data in the CP-violating next-to-minimal supersymmetric model(NMSSM) where a strongly first order electroweak phase transition(EWPT) is obtained in the general complex Higgs potential. With representative benchmark points which pass the current LEP and LHC constraints, we demonstrate the structure of EWPT for those points and how a strongly first order EWPT is obtained in the complex NMSSM where the resulting gravitational wave production properties are found to be within the reaches of future space-based interferometers like BBO and Ultimate-DECIGO. We further calculate the generated baryon asymmetries where the CP violating sources are(1): higgsino-singlino dominated,(2): higgsino-gaugino dominated or(3): from both sources. It is shown that all three representing scenarios could evade the strong constraints set by various electric dipole moments(EDM) searches where cancellations among the EDM contributions occur at the tree level(higgsino-singlino dominated) or loop level(higgsino-gaugino dominated).The 125 GeV SM like Higgs can be either the second lightest neutral Higgs H_2 or the third lightest neutral Higgs H_3. Finally, we comment on the future direct and indirect probe of CPV in the Higgs sector from the collider and EDM experiments.