In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar...In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.展开更多
Abstract--The time-optimal control design of the double integrator is extended to the finite-time stabilization design that compensates both input saturation and input delay. With the aid of the Artstein's transforma...Abstract--The time-optimal control design of the double integrator is extended to the finite-time stabilization design that compensates both input saturation and input delay. With the aid of the Artstein's transformation, the problem is reduced to assigning a saturated finite-time stabilizer. Index Terms--Finite-time stabilization, input delay, saturated design.展开更多
The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of th...Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of the nonlinear non-autonomous gyroscopes in a given finite time is studied. It is assumed that the gyroscope system is perturbed by model uncertainties, external disturbances, and unknown parameters. Besides, the effects of input nonlinearities are taken into account. Appropriate adaptive laws are proposed to tackle the unknown parameters. Based on the adaptive laws and the finite-time control theory, discontinuous finite-time control laws are proposed to ensure the finite-time stability of the system. The finite-time stability and convergence of the closed-loop system are analytically proved. Some numerical simulations are presented to show the efficiency of the proposed finite-time control scheme and to validate the theoretical results.展开更多
This paper deals with the finite-time stabilization of unified chaotic complex systems with known and unknown parameters. Based on the finite-time stability theory, nonlinear control laws are presented to achieve fini...This paper deals with the finite-time stabilization of unified chaotic complex systems with known and unknown parameters. Based on the finite-time stability theory, nonlinear control laws are presented to achieve finite-time chaos control of the determined and uncertain unified chaotic complex systems, respectively. The two controllers are simple, and one of the uncertain unified chaotic complex systems is robust. For the design of a finite-time controller on uncertain unified chaotic complex systems, only some of the unknown parameters need to be bounded. Simulation results for the chaotic complex Lorenz, Lu¨ and Chen systems are presented to validate the design and analysis.展开更多
Dear editor,This letter designs the event-triggered control(ETC)to achieve finite-time stabilization(FTS)of linear systems with input constraints.The key idea of the established algorithm is that the designed time-var...Dear editor,This letter designs the event-triggered control(ETC)to achieve finite-time stabilization(FTS)of linear systems with input constraints.The key idea of the established algorithm is that the designed time-varying high-gain is only scheduled on a specified time determined by an event-triggered mechanism.展开更多
In this paper, an adaptive feedback controller is proposed to achieve the finite-time stability of dynamical system. In the proposed scheme, the feedback gain of the adaptive feedback controller is automatically tuned...In this paper, an adaptive feedback controller is proposed to achieve the finite-time stability of dynamical system. In the proposed scheme, the feedback gain of the adaptive feedback controller is automatically tuned according to the adaptation law in order to stabilize unstable fixed points of the system. Based on the Lyapunov function method and the finite-time stability theory, we get a sufficient condition for the finite-time stability. Finally, simulation results show the effectiveness and feasibility of the proposed finite-time controller.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators ...Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators was transformed into linear system through the exact state feedback linearization,and then using the finite time stabilization control method of the linear system,a finite-time state feedback stabilization controller was designed for the flexible manipulators.Furthermore,it was proved that all the states of flexible manipulators could be stabilized to equilibrium in finite-time under the proposed controller.The simulation results show that the performance of the flexible manipulators under the proposed finite-time state feedback controller is better than the traditional state-feedback controller.The proposed finite-time stabilization controller can improve the performance of the flexible manipulators.展开更多
This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global ...This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)m...This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)model,simplifying the stabilizing controller design.We implement a separate controller design and propose exponential stabilization controller and finite-time stabilization controller under finite-time disturbance observer(FTDO)for the two system inputs.In addition,we discuss the specifics of global stabilization control design.Our approach demonstrates that two system states exponentially or asymptotically converge to zero under the provided switching stabilization control strategy,while all other system states converge to zero within a finite time.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order obs...Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.展开更多
Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an ...Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an appropriate test condition is also provided.For pre-given passivity rate and average dwell time,a set of feedback controllers is designed by use of the passivity property.展开更多
Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fr...Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents.展开更多
Dear Editor,This letter presents a nonlinear robust controller design method for ship roll stabilization by combining the dual of Lyapunov's stability theorem with the sum of squares(SOS) technique. Varying initia...Dear Editor,This letter presents a nonlinear robust controller design method for ship roll stabilization by combining the dual of Lyapunov's stability theorem with the sum of squares(SOS) technique. Varying initial metacentric height and ship speed are regarded as uncertainties, sea waves are considered as external disturbances, and then the robust nonlinear controller is designed. Taking a container ship as an example, simulations are performed to verify the effectiveness of the proposed design scheme.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a...Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.展开更多
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin...Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.展开更多
基金supported by the National Natural Science Foundation of China (62073015,62173036,62122014)。
文摘In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.
基金partially supported by the National Natural Science Foundation of China(61374024,61321003,61325309)the Natural Science Foundation of Hunan Province(14JJ2016)the Teacher Research Foundation of Central South University(2013JSJJ023)
文摘Abstract--The time-optimal control design of the double integrator is extended to the finite-time stabilization design that compensates both input saturation and input delay. With the aid of the Artstein's transformation, the problem is reduced to assigning a saturated finite-time stabilizer. Index Terms--Finite-time stabilization, input delay, saturated design.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.
文摘Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of the nonlinear non-autonomous gyroscopes in a given finite time is studied. It is assumed that the gyroscope system is perturbed by model uncertainties, external disturbances, and unknown parameters. Besides, the effects of input nonlinearities are taken into account. Appropriate adaptive laws are proposed to tackle the unknown parameters. Based on the adaptive laws and the finite-time control theory, discontinuous finite-time control laws are proposed to ensure the finite-time stability of the system. The finite-time stability and convergence of the closed-loop system are analytically proved. Some numerical simulations are presented to show the efficiency of the proposed finite-time control scheme and to validate the theoretical results.
基金the National Natural Science Foundation of China(Grant Nos.60874009 and 10971120)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FM010)
文摘This paper deals with the finite-time stabilization of unified chaotic complex systems with known and unknown parameters. Based on the finite-time stability theory, nonlinear control laws are presented to achieve finite-time chaos control of the determined and uncertain unified chaotic complex systems, respectively. The two controllers are simple, and one of the uncertain unified chaotic complex systems is robust. For the design of a finite-time controller on uncertain unified chaotic complex systems, only some of the unknown parameters need to be bounded. Simulation results for the chaotic complex Lorenz, Lu¨ and Chen systems are presented to validate the design and analysis.
基金supported in part by the National Natural Science Foundation of China(52075132,51907038)the State Key Laboratory of Digital Manufacturing Equipment&Technology(Huazhong University of Science and Technology)(DMETKF2020024)。
文摘Dear editor,This letter designs the event-triggered control(ETC)to achieve finite-time stabilization(FTS)of linear systems with input constraints.The key idea of the established algorithm is that the designed time-varying high-gain is only scheduled on a specified time determined by an event-triggered mechanism.
文摘In this paper, an adaptive feedback controller is proposed to achieve the finite-time stability of dynamical system. In the proposed scheme, the feedback gain of the adaptive feedback controller is automatically tuned according to the adaptation law in order to stabilize unstable fixed points of the system. Based on the Lyapunov function method and the finite-time stability theory, we get a sufficient condition for the finite-time stability. Finally, simulation results show the effectiveness and feasibility of the proposed finite-time controller.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金Sponsored by the Doctoral Fund of Ministry of Education of China(20070288022)the Natural Science Foundation of Jiangsu Province of China(BK2008404)the Young Teacher Academic Foundation of Nanjing University of Technology(39710013)
文摘Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators was transformed into linear system through the exact state feedback linearization,and then using the finite time stabilization control method of the linear system,a finite-time state feedback stabilization controller was designed for the flexible manipulators.Furthermore,it was proved that all the states of flexible manipulators could be stabilized to equilibrium in finite-time under the proposed controller.The simulation results show that the performance of the flexible manipulators under the proposed finite-time state feedback controller is better than the traditional state-feedback controller.The proposed finite-time stabilization controller can improve the performance of the flexible manipulators.
基金supported by the National Natural Science Foundation of China(62073019)。
文摘This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金partially supported by the National Natural Science Foundation of China(62173207,62073187)the Science Center Program of the National Natural Science Foundation of China(62188101)+1 种基金the China Postdoctoral Science Special Foundation(2023T160334)the Youth Innovation Team Project of Colleges and Universities in Shandong Province(2022KJ176)。
文摘This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)model,simplifying the stabilizing controller design.We implement a separate controller design and propose exponential stabilization controller and finite-time stabilization controller under finite-time disturbance observer(FTDO)for the two system inputs.In addition,we discuss the specifics of global stabilization control design.Our approach demonstrates that two system states exponentially or asymptotically converge to zero under the provided switching stabilization control strategy,while all other system states converge to zero within a finite time.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
基金supported by the National Natural Science Foundation of China(62103175)Taishan Scholar Project of Shandong Province of China。
文摘Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.
基金supported by the National Natural Science Foundation of China(U23A20324,62201510)the 111 Project(B16009)+1 种基金the Henan Provincial Department of Science and Technology Research Project(212102310299)the Open Foundation of Henan Key Laboratory of General Aviation Technology(ZHKF-230206)。
文摘Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an appropriate test condition is also provided.For pre-given passivity rate and average dwell time,a set of feedback controllers is designed by use of the passivity property.
基金supported by the National Key Research and Development Project of China(2020YFA0714301)the National Natural Science Foundation of China(61833005)。
文摘Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents.
基金supported by the National Natural Science Foundation of Jiangsu Province (BK20231112)。
文摘Dear Editor,This letter presents a nonlinear robust controller design method for ship roll stabilization by combining the dual of Lyapunov's stability theorem with the sum of squares(SOS) technique. Varying initial metacentric height and ship speed are regarded as uncertainties, sea waves are considered as external disturbances, and then the robust nonlinear controller is designed. Taking a container ship as an example, simulations are performed to verify the effectiveness of the proposed design scheme.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金Funded by the National Natural Science Foundation of China(Nos.52074245,52374416 and 52202029)the China Postdoctoral Science Foundation(No.2022M721058)。
文摘Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.
基金the National Natural Science Foundation of China(No.52275062)and(No.52075262).
文摘Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.