This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the ...This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the properties of the universal gravitational interaction, which maps any physical field upon the space-time geometry. Therefore, an attempt is made in this research work to reduce the quantization of physical fields in GRT to the space-time quantization. Three reasons for quantum phenomena are considered: Partition of space-time into a set of unconnected Novikov’s R- and T-domains impenetrable for light paths;the set is generated by the invariance of Einstein’s equations with respect to dual mappings;The existence of electric charge quanta of wormholes, which geometrically describe elementary particles in GRT. This gives rise to a discrete spectrum of their physical and geometric parameters governed by Diophantine equations. It is shown that the fundamental constants (electric charge, rest masses of an electron and a proton) are interconnected arithmetically;The existence of the so-called Diophantine catastrophe, when fluctuations in the values of physical constants tending to zero lead to fluctuations in the number of electric charges and the number of nucleons at the wormhole throats, which tend to infinity, so that the product of the increments of these numbers by the increment of physical constants forms a relation equivalent to the uncertainty relation in quantum mechanics. This suggests that space-time cannot but fluctuate, and, moreover, its fluctuations are bounded from below, so that all processes become chaotic, and the observables become averaged over this chaos.展开更多
In further discussion on the Maxwell-Lorentz equations in Dirac’s symmetrisation, I introduce the concept of magnetic monopole as an “act of electric current” in the 2<sup>nd</sup> equation (i.e. the an...In further discussion on the Maxwell-Lorentz equations in Dirac’s symmetrisation, I introduce the concept of magnetic monopole as an “act of electric current” in the 2<sup>nd</sup> equation (i.e. the analog of the “act of movement” in Classical Mechanics), I postulate a “magnetic displacement current” and a “magnetomotive force” in the 3<sup>rd</sup> and 4<sup>th</sup> equations, respectively (i.e. the analogs of the “electric displacement current” and of the “electromotive force” in the 4<sup>th</sup> and 3<sup>rd</sup> equations, respectively). As a consequence, I propose a generalised vision of the Electromagnetism in which inhomogeneous, microscopic, and relativistically linked equations describe the static and the oscillatory phenomena. Then, in the frame of Relativity, I propose analog microscopic equations to study the Gravitation and the Space-Time in terms of static and oscillatory phenomena: the static equations show the sources of newly defined vector fields (the generalised mass density as the source of the generalised mass field, the generalised time density as the source of the generalised space field, respectively), whereas the oscillatory equations describe the propagation of the gravitational waves and of the spatiotemporal waves, respectively. In other words, I propose to unify Electromagnetism, Gravitation, and Space-Time in terms of microscopic Maxwell-Lorentz-like equations in Dirac’s symmetrisation, where the unifying trait is c. Finally, using the concepts of the proposed generalised Electromagnetism, I discuss the conservation in Electromagnetism and the interaction between matter and electromagnetic waves.展开更多
An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a...An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a hyperbolic fractal Rindler space-time leading to the same robust results regarding real energy and dark energy being 4.5% and 95.5% respectively in full agreement with all recent cosmological measurements.展开更多
The theory of general relativity is related to the concept of curvature of space- time induced by the presence of the massive objects. We will see through this paper that the general relativity can be linked with line...The theory of general relativity is related to the concept of curvature of space- time induced by the presence of the massive objects. We will see through this paper that the general relativity can be linked with linear Algebra and Vector Analysis without the need for concept of space-time. This is important for the unification of general relativity with quantum mechanics, gravity with electromagnetic, and a better understanding of the universe, gravity, black holes. The most important is the separation between the space-time and the big bang theory, which prove the existence of space-time before that, which leads to the existence of the creator of the universe.展开更多
We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated...We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.展开更多
Based on the Mach’s principle, black holes warp the space time in a way that geodesic for every object which is moving toward black hole starts to bend and object starts to rotate around the black hole. Even light ca...Based on the Mach’s principle, black holes warp the space time in a way that geodesic for every object which is moving toward black hole starts to bend and object starts to rotate around the black hole. Even light cannot be able to escape from the strong gravitational field of black hole and all the light like paths will warp so as to fall farther to the hole. Before arriving to the Schwarzschild’s Sphere, object faces with length extension because of the difference between amount of tidal forces on the nearest and furthest points of object that take the object apart and after passing the Schwarzschild’s sphere, based on the Special relativity of Einstein, the parts of object face with length contraction. In comparison between strange stars and black holes we conclude that core of strange stars has a temperature and pressure not sufficient for up and down quarks and they turn into strange ones. However, in core of black holes, because of massive stars and hot gases falling into it, they are always in a high temperature and pressure. So they can be made up of up and down quarks. At the Ergo sphere Region of black hole, a particle that gets into it will divide into 2 pieces, one of them falls into the black hole and another gets out of the Schwarzschild sphere very fast and it’s called the black hole radiation. According to the Diagram drawn by R. Rafini and J. Weeler, an object gets out of white hole in past space-time, it can be able to send signals to us and we can receive it but black hole which is located in future space-time, after object enters to the Schwarzschild’s Sphere, the signals it sends won’t be received. In order to reach the third space-time which is like a mirror to our universe, our speed needs to exceed the speed of light to pass the Einstein-Rosen Bridge. As a conclusion, structure of black holes can be made up of up and down quarks and everything falls into the black hole, collapses and turns into a bunch of quarks. Space-time around black holes, based on Rafini-Weeler diagram, is like a frontier between our space-time and other space-times. So it can be possible to reach past space-time and other space-times.展开更多
Along with the construction of non-Lorentz-invariant effective field theories, recent studies which are based on geometric models of Finsler space-time become more and more popular. In this respect, the Finslerian app...Along with the construction of non-Lorentz-invariant effective field theories, recent studies which are based on geometric models of Finsler space-time become more and more popular. In this respect, the Finslerian approach to the problem of Lorentz symmetry violation is characterized by the fact that the violation of Lorentz symmetry is not accompanied by a violation of relativistic symmetry. That means, in particular, that preservation of relativistic symmetry can be considered as a rigorous criterion of the viability for any non-Lorentz-invariant effective field theory. Although this paper has a review character, it contains (with few exceptions) only those results on Finsler extensions of relativity theory, that were obtained by the authors.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
In order to gradually build a theoretical system of human rights with Chinese characteristics that conforms to the development of the times through rigorous academic research, researchers need to break through the bas...In order to gradually build a theoretical system of human rights with Chinese characteristics that conforms to the development of the times through rigorous academic research, researchers need to break through the basic think- ing tendency of "from idea to idea" step by step and finally establish the fundamental research orientation of "specifying human rights stud- ies." Through comprehensive and systematic analysis and sorting out various basic concepts relating to human rights, researchers also need to finally establish a solid foundation and prerequisite for fruitful academic study.展开更多
文摘This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the properties of the universal gravitational interaction, which maps any physical field upon the space-time geometry. Therefore, an attempt is made in this research work to reduce the quantization of physical fields in GRT to the space-time quantization. Three reasons for quantum phenomena are considered: Partition of space-time into a set of unconnected Novikov’s R- and T-domains impenetrable for light paths;the set is generated by the invariance of Einstein’s equations with respect to dual mappings;The existence of electric charge quanta of wormholes, which geometrically describe elementary particles in GRT. This gives rise to a discrete spectrum of their physical and geometric parameters governed by Diophantine equations. It is shown that the fundamental constants (electric charge, rest masses of an electron and a proton) are interconnected arithmetically;The existence of the so-called Diophantine catastrophe, when fluctuations in the values of physical constants tending to zero lead to fluctuations in the number of electric charges and the number of nucleons at the wormhole throats, which tend to infinity, so that the product of the increments of these numbers by the increment of physical constants forms a relation equivalent to the uncertainty relation in quantum mechanics. This suggests that space-time cannot but fluctuate, and, moreover, its fluctuations are bounded from below, so that all processes become chaotic, and the observables become averaged over this chaos.
文摘In further discussion on the Maxwell-Lorentz equations in Dirac’s symmetrisation, I introduce the concept of magnetic monopole as an “act of electric current” in the 2<sup>nd</sup> equation (i.e. the analog of the “act of movement” in Classical Mechanics), I postulate a “magnetic displacement current” and a “magnetomotive force” in the 3<sup>rd</sup> and 4<sup>th</sup> equations, respectively (i.e. the analogs of the “electric displacement current” and of the “electromotive force” in the 4<sup>th</sup> and 3<sup>rd</sup> equations, respectively). As a consequence, I propose a generalised vision of the Electromagnetism in which inhomogeneous, microscopic, and relativistically linked equations describe the static and the oscillatory phenomena. Then, in the frame of Relativity, I propose analog microscopic equations to study the Gravitation and the Space-Time in terms of static and oscillatory phenomena: the static equations show the sources of newly defined vector fields (the generalised mass density as the source of the generalised mass field, the generalised time density as the source of the generalised space field, respectively), whereas the oscillatory equations describe the propagation of the gravitational waves and of the spatiotemporal waves, respectively. In other words, I propose to unify Electromagnetism, Gravitation, and Space-Time in terms of microscopic Maxwell-Lorentz-like equations in Dirac’s symmetrisation, where the unifying trait is c. Finally, using the concepts of the proposed generalised Electromagnetism, I discuss the conservation in Electromagnetism and the interaction between matter and electromagnetic waves.
文摘An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a hyperbolic fractal Rindler space-time leading to the same robust results regarding real energy and dark energy being 4.5% and 95.5% respectively in full agreement with all recent cosmological measurements.
文摘The theory of general relativity is related to the concept of curvature of space- time induced by the presence of the massive objects. We will see through this paper that the general relativity can be linked with linear Algebra and Vector Analysis without the need for concept of space-time. This is important for the unification of general relativity with quantum mechanics, gravity with electromagnetic, and a better understanding of the universe, gravity, black holes. The most important is the separation between the space-time and the big bang theory, which prove the existence of space-time before that, which leads to the existence of the creator of the universe.
文摘We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.
文摘Based on the Mach’s principle, black holes warp the space time in a way that geodesic for every object which is moving toward black hole starts to bend and object starts to rotate around the black hole. Even light cannot be able to escape from the strong gravitational field of black hole and all the light like paths will warp so as to fall farther to the hole. Before arriving to the Schwarzschild’s Sphere, object faces with length extension because of the difference between amount of tidal forces on the nearest and furthest points of object that take the object apart and after passing the Schwarzschild’s sphere, based on the Special relativity of Einstein, the parts of object face with length contraction. In comparison between strange stars and black holes we conclude that core of strange stars has a temperature and pressure not sufficient for up and down quarks and they turn into strange ones. However, in core of black holes, because of massive stars and hot gases falling into it, they are always in a high temperature and pressure. So they can be made up of up and down quarks. At the Ergo sphere Region of black hole, a particle that gets into it will divide into 2 pieces, one of them falls into the black hole and another gets out of the Schwarzschild sphere very fast and it’s called the black hole radiation. According to the Diagram drawn by R. Rafini and J. Weeler, an object gets out of white hole in past space-time, it can be able to send signals to us and we can receive it but black hole which is located in future space-time, after object enters to the Schwarzschild’s Sphere, the signals it sends won’t be received. In order to reach the third space-time which is like a mirror to our universe, our speed needs to exceed the speed of light to pass the Einstein-Rosen Bridge. As a conclusion, structure of black holes can be made up of up and down quarks and everything falls into the black hole, collapses and turns into a bunch of quarks. Space-time around black holes, based on Rafini-Weeler diagram, is like a frontier between our space-time and other space-times. So it can be possible to reach past space-time and other space-times.
基金partially supported by the Sectorial Operational Program Human Resources Development(SOP HRD)financed from the European Social Fund and by the Romanian Government under the Project number POSDRU/89/1.5/S/59323.
文摘Along with the construction of non-Lorentz-invariant effective field theories, recent studies which are based on geometric models of Finsler space-time become more and more popular. In this respect, the Finslerian approach to the problem of Lorentz symmetry violation is characterized by the fact that the violation of Lorentz symmetry is not accompanied by a violation of relativistic symmetry. That means, in particular, that preservation of relativistic symmetry can be considered as a rigorous criterion of the viability for any non-Lorentz-invariant effective field theory. Although this paper has a review character, it contains (with few exceptions) only those results on Finsler extensions of relativity theory, that were obtained by the authors.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.
文摘In order to gradually build a theoretical system of human rights with Chinese characteristics that conforms to the development of the times through rigorous academic research, researchers need to break through the basic think- ing tendency of "from idea to idea" step by step and finally establish the fundamental research orientation of "specifying human rights stud- ies." Through comprehensive and systematic analysis and sorting out various basic concepts relating to human rights, researchers also need to finally establish a solid foundation and prerequisite for fruitful academic study.