In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b...In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.展开更多
基金Supported by the National Natural Science Foundation of China(11771020,12171005).
文摘In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.