Erwinia amylovora species were isolated from the blossoms, exudates, infected fruits, leaves and bent branches of diseased apple, pear and hawthorn trees, selected in the Chy, Osh and Jalal Abad regions. Biochemical a...Erwinia amylovora species were isolated from the blossoms, exudates, infected fruits, leaves and bent branches of diseased apple, pear and hawthorn trees, selected in the Chy, Osh and Jalal Abad regions. Biochemical and pathogenicity tests, alongside PCR analyses, were conducted to identify the local isolates of Erwinia amylovora. The alternative antagonistic microorganisms which combat bacterium E. amylovora were tested within in vitro and in vivo conditions. The results revealed the ability of Streptomyces antagonistic bacteria to decrease fire blight severity on pear and apple trees during the first stage of the fire blight disease in leaf tissues. Streptomyces strain C1-4 suppressed E. amylovora disease symptoms in the leaf tissues and excised apple and pear shoots. The incidence of fire blight on leaves was reduced by about 70% with two applications of bacterial antagonists. Further studies at different locations in Kyrgyzstan, using large scale application, would allow for stronger recommendations to be made, including studies and recommendations on their ability to prevent disease and to use them as main components in an integrated pest management program.展开更多
Fire blight, caused by Erwinia amylovora, is a devastating disease of apples and pears, causing enormous economic losses around the world. The disease is indigenous to North America and has spread to more than 50 coun...Fire blight, caused by Erwinia amylovora, is a devastating disease of apples and pears, causing enormous economic losses around the world. The disease is indigenous to North America and has spread to more than 50 countries since its discovery in 1870 s. Recent reports of the disease in China's neighboring countries, including South Korea, Kyrgyzstan, and Kazakhstan, pose great threat to the world's leading producer of apples and pears. This mini-review intends to provide an update on the disease, pathogen biology, epidemiology, and control. It will also provide some perspectives and suggestions for the apple and pear industry and growers in China, which will face the imminent threat of this devastating disease.展开更多
Since several Asian pear species are considered to be potential source of fire blight resistance, we crossed “Doyenné du Comice”, the susceptible European cultivar, with four Asian pear species. The aim of the ...Since several Asian pear species are considered to be potential source of fire blight resistance, we crossed “Doyenné du Comice”, the susceptible European cultivar, with four Asian pear species. The aim of the study was to establish the level of resistance of each genotype and the mode of transmission of fire blight resistance to each F1 full-sib progeny. The best sources of resistance were P. ussuriensis 18 and P. ussuriensis var. ovoidea 8 ranked to resistant and highly resistant, respectively. Although pear resistance to fire blight is suggested to be polygenic, distribution of phenotypes in “Doyenné du Comice” × P. ussuriensis var. ovoidea 8 hybrid family suggests the possibility of monogenic inheritance with the dominance of resistance derived from P. ussuriensis var. ovoidea 8. Polygenic inheritance of pear resistance to fire blight was identified in cross combinations of “Doyenné du Comice” with P. pyrifolia 6, and contributed by the major gene, with P. ussuriensis 18 and P. calleryana 12. Transgressive segregation was observed within the progenies of susceptible, moderately susceptible and resistant parents.展开更多
Bacterial-fungal interactions are widespread in nature.We observed that pear orchards affected by Cytospora pyri(formerly Valsa pyri)were often accompanied with Erwinia amylovora.However,the relationship of the two pa...Bacterial-fungal interactions are widespread in nature.We observed that pear orchards affected by Cytospora pyri(formerly Valsa pyri)were often accompanied with Erwinia amylovora.However,the relationship of the two pathogens was unclear.The objective of this study was to determine whether the synergistic effect exists between E.amylovora and C.pyri.We first analyzed the coexistence frequencies of E.amylovora and C.pyri in pear trees.Virulence of the two pathogens,growth,physical interactions,amylovoran production,and expression of genes for amylovoran biosynthesis were conducted.Our results showed that E.amylovora and C.pyri could coexist on the same lesion and caused much more severe disease.We also found that E.amylovora could physically attach to C.pyri and the expression of amylovoran biosynthesis genes were up-regulated with fungal metabolite treatment.These results indicate that E.amylovora and C.pyri can cooperatively interact,which provides C.pyri with an opportunity to promote bacterial dispersal and production of virulence factor in E.amylovora.展开更多
文摘Erwinia amylovora species were isolated from the blossoms, exudates, infected fruits, leaves and bent branches of diseased apple, pear and hawthorn trees, selected in the Chy, Osh and Jalal Abad regions. Biochemical and pathogenicity tests, alongside PCR analyses, were conducted to identify the local isolates of Erwinia amylovora. The alternative antagonistic microorganisms which combat bacterium E. amylovora were tested within in vitro and in vivo conditions. The results revealed the ability of Streptomyces antagonistic bacteria to decrease fire blight severity on pear and apple trees during the first stage of the fire blight disease in leaf tissues. Streptomyces strain C1-4 suppressed E. amylovora disease symptoms in the leaf tissues and excised apple and pear shoots. The incidence of fire blight on leaves was reduced by about 70% with two applications of bacterial antagonists. Further studies at different locations in Kyrgyzstan, using large scale application, would allow for stronger recommendations to be made, including studies and recommendations on their ability to prevent disease and to use them as main components in an integrated pest management program.
基金supported by the National Key R&D Program of China(2016YFC1201200)the National Natural Science Foundation of China(31500107 and 31772231)
文摘Fire blight, caused by Erwinia amylovora, is a devastating disease of apples and pears, causing enormous economic losses around the world. The disease is indigenous to North America and has spread to more than 50 countries since its discovery in 1870 s. Recent reports of the disease in China's neighboring countries, including South Korea, Kyrgyzstan, and Kazakhstan, pose great threat to the world's leading producer of apples and pears. This mini-review intends to provide an update on the disease, pathogen biology, epidemiology, and control. It will also provide some perspectives and suggestions for the apple and pear industry and growers in China, which will face the imminent threat of this devastating disease.
文摘Since several Asian pear species are considered to be potential source of fire blight resistance, we crossed “Doyenné du Comice”, the susceptible European cultivar, with four Asian pear species. The aim of the study was to establish the level of resistance of each genotype and the mode of transmission of fire blight resistance to each F1 full-sib progeny. The best sources of resistance were P. ussuriensis 18 and P. ussuriensis var. ovoidea 8 ranked to resistant and highly resistant, respectively. Although pear resistance to fire blight is suggested to be polygenic, distribution of phenotypes in “Doyenné du Comice” × P. ussuriensis var. ovoidea 8 hybrid family suggests the possibility of monogenic inheritance with the dominance of resistance derived from P. ussuriensis var. ovoidea 8. Polygenic inheritance of pear resistance to fire blight was identified in cross combinations of “Doyenné du Comice” with P. pyrifolia 6, and contributed by the major gene, with P. ussuriensis 18 and P. calleryana 12. Transgressive segregation was observed within the progenies of susceptible, moderately susceptible and resistant parents.
基金supported by the Major Science and Technology Projects in Xinjiang,China(2023A02006).
文摘Bacterial-fungal interactions are widespread in nature.We observed that pear orchards affected by Cytospora pyri(formerly Valsa pyri)were often accompanied with Erwinia amylovora.However,the relationship of the two pathogens was unclear.The objective of this study was to determine whether the synergistic effect exists between E.amylovora and C.pyri.We first analyzed the coexistence frequencies of E.amylovora and C.pyri in pear trees.Virulence of the two pathogens,growth,physical interactions,amylovoran production,and expression of genes for amylovoran biosynthesis were conducted.Our results showed that E.amylovora and C.pyri could coexist on the same lesion and caused much more severe disease.We also found that E.amylovora could physically attach to C.pyri and the expression of amylovoran biosynthesis genes were up-regulated with fungal metabolite treatment.These results indicate that E.amylovora and C.pyri can cooperatively interact,which provides C.pyri with an opportunity to promote bacterial dispersal and production of virulence factor in E.amylovora.