期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simulation Emergency Fire Evacuation Model for Nuclear Power Plant
1
作者 Amany F. Abd El-Aal Adel Zaghloul Magy M. Kandil 《Journal of Power and Energy Engineering》 2021年第4期30-52,共23页
Simulation of egress is vital for minimizing losses during fire disasters, however accurate simulations are scarce and real-life data is hard to come by. In this paper, a Proposed Wireless Fire Evacuation Model (PWFEM... Simulation of egress is vital for minimizing losses during fire disasters, however accurate simulations are scarce and real-life data is hard to come by. In this paper, a Proposed Wireless Fire Evacuation Model (PWFEM) is proposed to simulate fire evacuation process in a short time<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to minimize evacuee’s exposure to the harmful radiation and fire hazards. The PWFEM</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">simulation realistic by supposing fire scenario at</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">cabined contains electrical cables inside a standard Main Control Room (MCR) in a Nuclear Power Plant (NPP) building.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">In addition, a</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">new Hybrid Safest Shortest Exit (HSSE) is developed</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which consists of three stages: safest route based </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">o</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">n rules-based technique, evacuees location based on the DV-hop technique </span></span></span><span><span><span style="font-family:" color:#c45911;"=""><a href="#ref1" target="_blank"><span style="font-family:Verdana;">[1]</span></a></span><span></span></span></span><span><span></span></span><span></span><span><span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and shortest route that depends on Dijkstra techniqu</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. The PWFEM Simulations </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">appreciated</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to yield a realistic fire scenario by using a telecommunications TCP/IP network in</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">form of server and client sides that help in transfer data inside internal networks in the NPP building. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">O</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">n the server-side, suppose that</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Consolidated Model of Fire Growth and Smoke Transport (CFAST) fire modeling is applied to simulate the fire scenario in MCR through CFAST model to generate fire products as output data in excel sheets and sends them to the client-side. The client-side then runs HSSE to produce the tree map for safest and shortest routes to help the evacuee for safe exit from his/her location.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">HSSE can be implemented on evacuee’s watches. From the results, </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">it is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">concluded that PWFEM can simulate the fire scenario inside MCR,</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">furthermore </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">it is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">validated that HSEE can be used as an efficient emergency fire evacuation technique that can produce safest and shortest exit route for evacuee in any location inside NPP in very small time. In addition, PWFEM can be used for simulating</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fire evacuation inside any high-risk buildings and can appreciate</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">yield</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> any realistic fire scenario with many types of fire sources in different places inside buildings.</span></span></span> 展开更多
关键词 fire Safety fire evacuation Model NPP evacuation Localization Technique CFAST Model DV-Hop Technique Dijkstra Algorithm
下载PDF
RFES: a real-time fire evacuation system for Mobile Web3D 被引量:4
2
作者 Feng-ting YAN Yong-hao HU +3 位作者 Jin-yuan JIA Qing-hua GUO He-hua ZHU Zhi-geng PAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第8期1061-1075,共15页
There are many bottlenecks that limit the computing power of the Mobile Web3 D and they need to be solved before implementing a public fire evacuation system on this platform.In this study,we focus on three key proble... There are many bottlenecks that limit the computing power of the Mobile Web3 D and they need to be solved before implementing a public fire evacuation system on this platform.In this study,we focus on three key problems:(1)The scene data for large-scale building information modeling(BIM)are huge,so it is difficult to transmit the data via the Internet and visualize them on the Web;(2)The raw fire dynamic simulator(FDS)smoke diffusion data are also very large,so it is extremely difficult to transmit the data via the Internet and visualize them on the Web;(3)A smart artificial intelligence fire evacuation app for the public should be accurate and real-time.To address these problems,the following solutions are proposed:(1)The large-scale scene model is made lightweight;(2)The amount of dynamic smoke is also made lightweight;(3)The dynamic obstacle maps established from the scene model and smoke data are used for optimal path planning using a heuristic method.We propose a real-time fire evacuation system based on the ant colony optimization(RFES-ACO)algorithm with reused dynamic pheromones.Simulation results show that the public could use Mobile Web3 D devices to experience fire evacuation drills in real time smoothly.The real-time fire evacuation system(RFES)is efficient and the evacuation rate is better than those of the other two algorithms,i.e.,the leader-follower fire evacuation algorithm and the random fire evacuation algorithm. 展开更多
关键词 fire evacuation drill Building information modeling(BIM)building space Mobile Web3D Real-time fire evacuation system based on ant colony optimization(RFES-ACO)algorithm
原文传递
Evacuation strategies for vertical ship lift during initial fire: Integrated application of stairs and elevators 被引量:1
3
作者 Shu CHEN Menghan SHANG Jianping WANG 《Frontiers of Engineering Management》 2021年第1期135-147,共13页
Vertical ship lifts(VSLs)are widely used in navigation facilities worldwide because of their efficiency and low cost.Although several researchers have investigated fire evacuation strategies for reducing potential saf... Vertical ship lifts(VSLs)are widely used in navigation facilities worldwide because of their efficiency and low cost.Although several researchers have investigated fire evacuation strategies for reducing potential safety hazards in VSLs,an effective and integrated application of stairs and elevators when a fire occurs in a VSL is necessary.Several evacuation routes were analyzed according to VSL structure and evacuation times in this study.Objective function corresponding to the minimum vertical evacuation time and related simulation model was subsequently developed to obtain a cooperative evacuation plan considering different numbers of evacuees.The Three Gorges ship lift was used as an example,and simulation results indicate that number of evacuees and exit selection are the main influencing factors of the total evacuation time in the stair-and elevator-coordinated evacuation mode.Furthermore,the distance between people trapped in ship reception chamber and evacuation exits affects evacuees?choice of exits.The proposed model can provide a theoretical reference for evacuation research during initial fire events in VSLs. 展开更多
关键词 vertical ship lift initial fire fire evacuation numerical simulation STAIR ELEVATOR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部