The flow velocity of gases in gobs directly influences the kinetics and intensity of gaseous components release during heating and cooling of coal.The assessment of fire hazard is performed on the basis of concentrati...The flow velocity of gases in gobs directly influences the kinetics and intensity of gaseous components release during heating and cooling of coal.The assessment of fire hazard is performed on the basis of concentrations of particular gases in a mine air.These concentrations differ in coal heating and cooling phase which was proven in the study.This paper presented the results of the experimental study on temperature distribution in a simulated coal bed in heating(50–250°C)and cooling(250–35°C)phases as well as its correlation to variations in concentration of gases released in these phases and flow rates of gases flowing through the coal bed.The research was performed on twenty-two samples of bituminous coals acquired from various coal beds of Polish coal mines.Considerable differences were observed between heating and cooling phases in terms of the concentrations of gases taken into account in calculations of self-combustion index.In the heating phase temperature increase resulted in the decrease of concentrations ratios of ethane,ethylene,propane,propylene and acetylene,while in the cooling phase these ratios increased systemically.The effect of air(in heating phase)and nitrogen(in cooling phase)flow rate on the self-ignition index CO/CO2 was also determined.展开更多
Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renew...Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renewable energy sources. The exploitation of these new forms of energy, solar, wind, earth and bio-fuels, initiated the development and application of new technologies, so far unused in practice. Rapid development and wide application of installations for use of renewable energy in many households and companies opened a whole new risk and danger in the fire protection field. With the purpose of introducing this problem to engineers in the area of fire protection, health and safety at work, this paper systematically presents various types of facilities for exploitation of renewable energy sources as well as potential dangers, risks and issues related to their safe operation.展开更多
This paper reviews the fire problem in critical transportation infrastructures such as bridges and tunnels.The magnitude of the fire problem is illustrated,and the recent increase in fire problems in bridges and tunne...This paper reviews the fire problem in critical transportation infrastructures such as bridges and tunnels.The magnitude of the fire problem is illustrated,and the recent increase in fire problems in bridges and tunnels is highlighted.Recent research undertaken to address fire problems in transportation structures is reviewed,as well as critical factors governing the performance of those structures.Furthermore,key strategies recommended for mitigating fire hazards in bridges and tunnels are presented,and their applicability to practical situations is demonstrated through a practical case study.Furthermore,research needs and emerging trends for enhancing the“state-of-the-art”in this area are discussed.展开更多
The authors study the structure, functions and data organization for the hazard analysis system of urban post-earthquake fire on the platform of GIS. A general hazard analysis model of the post-earthquake fire is pres...The authors study the structure, functions and data organization for the hazard analysis system of urban post-earthquake fire on the platform of GIS. A general hazard analysis model of the post-earthquake fire is presented. Taking Shanghai central district as background, a system for hazard analysis of the post-earthquake fire and auxiliary decision-against fire is developed.展开更多
This paper focuses on how to build the model of precision fire hazard divisions in the level of forest resources sub-compartment.Based on 3D GIS technology and characteristics of forest fires in collective forest of s...This paper focuses on how to build the model of precision fire hazard divisions in the level of forest resources sub-compartment.Based on 3D GIS technology and characteristics of forest fires in collective forest of southern China,this study utilized Lin’an City,Zhejiang Province as the experimental area.Forest fire factors were divided into 11 indexes from the three categories(social and economic factors,forestry characteristics,and meteorological characteristics) and weighted for analysis.Next,three eigenvectors(one for each category) were created to build a nonlinear mathematical model called precision fire hazard divisions for forests.Then,the model was used to optimize and test forest fire hazard divisions with the least squares.Results showed that experimental and theoretical values of error were less than 0.1. Thus,in the experimental area this model and the fire occurrence history matched.展开更多
Rapid high-rise building construction of different occupancies is becoming popular in Dhaka due to its economic gain and functional flexibility. Fire prevention poses a significant difficulty to this type of construct...Rapid high-rise building construction of different occupancies is becoming popular in Dhaka due to its economic gain and functional flexibility. Fire prevention poses a significant difficulty to this type of construction due to its complexity and economic worth as well. Therefore, construction of high-rise building without following the proper fire safety measures, is a common practice at present in the city and it poses a greater threat to urban life considering its associated loss. Even though, most of the owners or authorities do not respect the construction code and the majority of them lack sufficient awareness and basic fire control knowledge and practice. More often, they are unable to comprehend the magnitude and severity of severe fire hazards, and recognize the causes and implementing effective mitigation measures are rare. As a result, the number of fire hazard in high-rise construction is increasing day by day. Hence, investigating the present condition of high-rise buildings (already built) in terms of Fire Protection System is imperative to prevent the upcoming fire hazard. An urban chunk of 33 plots along with Bir Uttam Aminul Haque Avenue, located in Banani, has been chosen for the study area considering its vulnerability to fire hazard. Among these buildings, STAR Tower and HBR Tower, these two high-rise buildings are assessed thoroughly using FRI (Fire Risk Index) Method. The method is semi-quantitative in nature with seventeen parameters associated with fire protection. This assessment represents a scenario in what extent fire codes are being followed in the selected area. It concludes that most of the buildings lack in providing protection against fire hazards for not following the code strictly. This research provides some recommendations which can be followed to improve the fire safety measures in this existing context. It is expected that this research could be a unique addition to firefighting knowledge by contributing to mitigating the consequences of fire related hazards in any densely populated city like Dhaka.展开更多
Forest fires in Algeria are ravaging an average of more than 32,000 hectares annually despite the prevention and control plan put in place. They are the most damaging factor of degradation of the forest and weigh heav...Forest fires in Algeria are ravaging an average of more than 32,000 hectares annually despite the prevention and control plan put in place. They are the most damaging factor of degradation of the forest and weigh heavily on the environment and the local economy. Conventional methods for fire prevention and control are time consuming and are not always reliable in view of the complexity and diversity of forest ecosystems. The main idea behind this study is to use the GIS and remote sensing for the development of a fire risk map of the Khoudida State Forest (Algeria). The approach adopted involves three parameters that control the fire behavior, which are: the top-morphology of the field, the combustibility of the plant cover and hazards. For each factor its correlation with risk was evaluated;the combination of the slope, altitude and exposure parameters in the topo-morphological index and the hazard map made it possible to evaluate the average risk for an area of more than 2132 hectares, 1521 hectares high and only 493 hectares, respectively 51.4%, 36.7% and 11.9%.展开更多
The management of the forest fire risk starts with it assessment. This assessment made the object of several works of research and many models of fire risk have been related. The model that interests us here is that e...The management of the forest fire risk starts with it assessment. This assessment made the object of several works of research and many models of fire risk have been related. The model that interests us here is that established for Mediterranean forests. This last is conceived according to a sum weighted model integral three factors, where each is affected by a weight, function of his influence on the propagation of the fire. However, this model remains critically and deserves a development and an improvement. For it, and seen the importance and the influence of climatic condition in the departure and in the propagation of fire, we propose, in this paper, to improve this formula by the addition of another climatic factor (marked ICL), and to present it under a product shape while respecting the same definition of the risk. The application of the proposed model, suggested uses the technical geomatics to mapping the degree of the fire risk. In this setting, a SIG has been established and applied on a forest of Bouzareah clump in Algiers. Originality as it will allow the understanding of fire hazard and vulnerability of the environment for a better control of risk.展开更多
This paper considers and describes the cool burning techniques long utilized by Australian Indigenous people as a contributor to bushfire mitigation. Indigenous fire management involves lighting the </span></...This paper considers and describes the cool burning techniques long utilized by Australian Indigenous people as a contributor to bushfire mitigation. Indigenous fire management involves lighting the </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">“</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">cool</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">”</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> fires in selected areas between March and July, in Australia, during the early dry season. The fires burn gradually, reducing fuel loads and creating fire breaks and not all of the area</span><span style="font-family:Verdana;"> is burnt. Late in the dry season, when the weather is</span><span style="font-family:Verdana;"> very hot, the method </span><span style="font-family:Verdana;">removes fuel for larger fires while maintaining and protecting habitat for mammals</span><span style="font-family:Verdana;">, reptiles, insects and birds. The management of Indigenous cultural fire offers an Indigenous viewpoint for wider control of fire and cultural fire </span><span style="font-family:Verdana;">management is an opportunity for collaborations to encourage Aboriginal empo</span><span style="font-family:Verdana;">werment with public and private sector organisations. Effective cool burning in contemporary prescribed burning activities can be achieved through imp</span><span style="font-family:Verdana;">lementation of good training, strong partnerships, carefully</span><span style="font-family:Verdana;"> considered on ground practices and appropriate and effective techniques.展开更多
基金This work was supported by the Ministry of Science and Higher Education,Poland(No.14303018).
文摘The flow velocity of gases in gobs directly influences the kinetics and intensity of gaseous components release during heating and cooling of coal.The assessment of fire hazard is performed on the basis of concentrations of particular gases in a mine air.These concentrations differ in coal heating and cooling phase which was proven in the study.This paper presented the results of the experimental study on temperature distribution in a simulated coal bed in heating(50–250°C)and cooling(250–35°C)phases as well as its correlation to variations in concentration of gases released in these phases and flow rates of gases flowing through the coal bed.The research was performed on twenty-two samples of bituminous coals acquired from various coal beds of Polish coal mines.Considerable differences were observed between heating and cooling phases in terms of the concentrations of gases taken into account in calculations of self-combustion index.In the heating phase temperature increase resulted in the decrease of concentrations ratios of ethane,ethylene,propane,propylene and acetylene,while in the cooling phase these ratios increased systemically.The effect of air(in heating phase)and nitrogen(in cooling phase)flow rate on the self-ignition index CO/CO2 was also determined.
文摘Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renewable energy sources. The exploitation of these new forms of energy, solar, wind, earth and bio-fuels, initiated the development and application of new technologies, so far unused in practice. Rapid development and wide application of installations for use of renewable energy in many households and companies opened a whole new risk and danger in the fire protection field. With the purpose of introducing this problem to engineers in the area of fire protection, health and safety at work, this paper systematically presents various types of facilities for exploitation of renewable energy sources as well as potential dangers, risks and issues related to their safe operation.
基金This study was supported by the National Science Foundation(No.CMMI-1068621).
文摘This paper reviews the fire problem in critical transportation infrastructures such as bridges and tunnels.The magnitude of the fire problem is illustrated,and the recent increase in fire problems in bridges and tunnels is highlighted.Recent research undertaken to address fire problems in transportation structures is reviewed,as well as critical factors governing the performance of those structures.Furthermore,key strategies recommended for mitigating fire hazards in bridges and tunnels are presented,and their applicability to practical situations is demonstrated through a practical case study.Furthermore,research needs and emerging trends for enhancing the“state-of-the-art”in this area are discussed.
基金National Outstanding Youth Science Foundation (59825105).
文摘The authors study the structure, functions and data organization for the hazard analysis system of urban post-earthquake fire on the platform of GIS. A general hazard analysis model of the post-earthquake fire is presented. Taking Shanghai central district as background, a system for hazard analysis of the post-earthquake fire and auxiliary decision-against fire is developed.
文摘This paper focuses on how to build the model of precision fire hazard divisions in the level of forest resources sub-compartment.Based on 3D GIS technology and characteristics of forest fires in collective forest of southern China,this study utilized Lin’an City,Zhejiang Province as the experimental area.Forest fire factors were divided into 11 indexes from the three categories(social and economic factors,forestry characteristics,and meteorological characteristics) and weighted for analysis.Next,three eigenvectors(one for each category) were created to build a nonlinear mathematical model called precision fire hazard divisions for forests.Then,the model was used to optimize and test forest fire hazard divisions with the least squares.Results showed that experimental and theoretical values of error were less than 0.1. Thus,in the experimental area this model and the fire occurrence history matched.
文摘Rapid high-rise building construction of different occupancies is becoming popular in Dhaka due to its economic gain and functional flexibility. Fire prevention poses a significant difficulty to this type of construction due to its complexity and economic worth as well. Therefore, construction of high-rise building without following the proper fire safety measures, is a common practice at present in the city and it poses a greater threat to urban life considering its associated loss. Even though, most of the owners or authorities do not respect the construction code and the majority of them lack sufficient awareness and basic fire control knowledge and practice. More often, they are unable to comprehend the magnitude and severity of severe fire hazards, and recognize the causes and implementing effective mitigation measures are rare. As a result, the number of fire hazard in high-rise construction is increasing day by day. Hence, investigating the present condition of high-rise buildings (already built) in terms of Fire Protection System is imperative to prevent the upcoming fire hazard. An urban chunk of 33 plots along with Bir Uttam Aminul Haque Avenue, located in Banani, has been chosen for the study area considering its vulnerability to fire hazard. Among these buildings, STAR Tower and HBR Tower, these two high-rise buildings are assessed thoroughly using FRI (Fire Risk Index) Method. The method is semi-quantitative in nature with seventeen parameters associated with fire protection. This assessment represents a scenario in what extent fire codes are being followed in the selected area. It concludes that most of the buildings lack in providing protection against fire hazards for not following the code strictly. This research provides some recommendations which can be followed to improve the fire safety measures in this existing context. It is expected that this research could be a unique addition to firefighting knowledge by contributing to mitigating the consequences of fire related hazards in any densely populated city like Dhaka.
文摘Forest fires in Algeria are ravaging an average of more than 32,000 hectares annually despite the prevention and control plan put in place. They are the most damaging factor of degradation of the forest and weigh heavily on the environment and the local economy. Conventional methods for fire prevention and control are time consuming and are not always reliable in view of the complexity and diversity of forest ecosystems. The main idea behind this study is to use the GIS and remote sensing for the development of a fire risk map of the Khoudida State Forest (Algeria). The approach adopted involves three parameters that control the fire behavior, which are: the top-morphology of the field, the combustibility of the plant cover and hazards. For each factor its correlation with risk was evaluated;the combination of the slope, altitude and exposure parameters in the topo-morphological index and the hazard map made it possible to evaluate the average risk for an area of more than 2132 hectares, 1521 hectares high and only 493 hectares, respectively 51.4%, 36.7% and 11.9%.
文摘The management of the forest fire risk starts with it assessment. This assessment made the object of several works of research and many models of fire risk have been related. The model that interests us here is that established for Mediterranean forests. This last is conceived according to a sum weighted model integral three factors, where each is affected by a weight, function of his influence on the propagation of the fire. However, this model remains critically and deserves a development and an improvement. For it, and seen the importance and the influence of climatic condition in the departure and in the propagation of fire, we propose, in this paper, to improve this formula by the addition of another climatic factor (marked ICL), and to present it under a product shape while respecting the same definition of the risk. The application of the proposed model, suggested uses the technical geomatics to mapping the degree of the fire risk. In this setting, a SIG has been established and applied on a forest of Bouzareah clump in Algiers. Originality as it will allow the understanding of fire hazard and vulnerability of the environment for a better control of risk.
文摘This paper considers and describes the cool burning techniques long utilized by Australian Indigenous people as a contributor to bushfire mitigation. Indigenous fire management involves lighting the </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">“</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">cool</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">”</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> fires in selected areas between March and July, in Australia, during the early dry season. The fires burn gradually, reducing fuel loads and creating fire breaks and not all of the area</span><span style="font-family:Verdana;"> is burnt. Late in the dry season, when the weather is</span><span style="font-family:Verdana;"> very hot, the method </span><span style="font-family:Verdana;">removes fuel for larger fires while maintaining and protecting habitat for mammals</span><span style="font-family:Verdana;">, reptiles, insects and birds. The management of Indigenous cultural fire offers an Indigenous viewpoint for wider control of fire and cultural fire </span><span style="font-family:Verdana;">management is an opportunity for collaborations to encourage Aboriginal empo</span><span style="font-family:Verdana;">werment with public and private sector organisations. Effective cool burning in contemporary prescribed burning activities can be achieved through imp</span><span style="font-family:Verdana;">lementation of good training, strong partnerships, carefully</span><span style="font-family:Verdana;"> considered on ground practices and appropriate and effective techniques.