Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Theref...Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.展开更多
The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effe...The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effective temperature control is crucial to ensure fuel cell reliability and durability. This paper uses active disturbance rejection control in the thermal management system to maintain the operating temperature and the stack inlet and outlet temperature difference at the set value. First, key cooling system modules such as expansion tanks, coolant circulation pumps and radiators based on Simulink were built. Then, physical modeling and simulation of the fuel cell cooling system was carried out. In order to ensure the effectiveness of the control strategy and reduce the parameter tuning workload, an active disturbance rejection control parameter optimization method using an elite genetic algorithm was proposed. When the optimized control strategy responds to input disturbances, the maximum overshoot of the system is only 1.23% and can reach stability again in 30 s, so the fuel cell temperature can be controlled effectively. Simulation results show that the optimized control strategy can effectively control the stack temperature and coolant temperature difference under the influence of stepped charging current without interference or with interference, and has strong robustness and anti-interference capability.展开更多
Background Ion pump control system of HIRFL is designed based on the real-time distributed control software,EPICS.The hardware architecture,communication principle,database design and interlock design are introduced a...Background Ion pump control system of HIRFL is designed based on the real-time distributed control software,EPICS.The hardware architecture,communication principle,database design and interlock design are introduced and elaborated in the paper.Methods PLC has been adopted to realize functions such as control monitoring and data communication.Interlock protect ion has been designed for ion pump control system to prevent damaging from high voltage.Results The test results show that the system has fast response function and high-speed data processing during the beam running and tuning.The response time of the system could reach 100 ms,the rate of data acquisition reaches to 10 time/s and the interlock protection time less than 40 ms.Conclusion The reliable and stable long-term operation of the vacuum system indicates that the performance has been constantly improved with the continuous optimization of the ion pump control system.展开更多
文摘Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.
文摘The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effective temperature control is crucial to ensure fuel cell reliability and durability. This paper uses active disturbance rejection control in the thermal management system to maintain the operating temperature and the stack inlet and outlet temperature difference at the set value. First, key cooling system modules such as expansion tanks, coolant circulation pumps and radiators based on Simulink were built. Then, physical modeling and simulation of the fuel cell cooling system was carried out. In order to ensure the effectiveness of the control strategy and reduce the parameter tuning workload, an active disturbance rejection control parameter optimization method using an elite genetic algorithm was proposed. When the optimized control strategy responds to input disturbances, the maximum overshoot of the system is only 1.23% and can reach stability again in 30 s, so the fuel cell temperature can be controlled effectively. Simulation results show that the optimized control strategy can effectively control the stack temperature and coolant temperature difference under the influence of stepped charging current without interference or with interference, and has strong robustness and anti-interference capability.
基金National Nature Science Foundation of China under Grant No.U1632141 and Western Light Foundation of Chinese Academy of Science under Grant No.29Y926040.
文摘Background Ion pump control system of HIRFL is designed based on the real-time distributed control software,EPICS.The hardware architecture,communication principle,database design and interlock design are introduced and elaborated in the paper.Methods PLC has been adopted to realize functions such as control monitoring and data communication.Interlock protect ion has been designed for ion pump control system to prevent damaging from high voltage.Results The test results show that the system has fast response function and high-speed data processing during the beam running and tuning.The response time of the system could reach 100 ms,the rate of data acquisition reaches to 10 time/s and the interlock protection time less than 40 ms.Conclusion The reliable and stable long-term operation of the vacuum system indicates that the performance has been constantly improved with the continuous optimization of the ion pump control system.