The study focuses on the spatial analysis of the threat of potential Aerodrome obstacles on flight safety operations, in Murtala Mohammed Airport, Ikeja Lagos State. The study arises from the cases of flight safety in...The study focuses on the spatial analysis of the threat of potential Aerodrome obstacles on flight safety operations, in Murtala Mohammed Airport, Ikeja Lagos State. The study arises from the cases of flight safety in Nigerian airports which begins from the time passengers board the flight to the take-off time and location, the taxing of the plane and ends at the landing. The research employs GIS to model the 3D obstacles of the aerodrome, which demonstrated the ability in classifying the various threats on the aerodrome. The data acquired for this study ranging from primary data which included georeferencing of the obstacles that are found along the aerodrome with a Differential Global Positioning System (DGPS) to secondary data which included all base maps and satellite images. The spatial data conversion and manipulations were done using the ArcGIS 10.3.1 software. The 3D simulation of the obstacles was done in the ArcScene environment. To examine the spatial patterns of the obstacles around the aerodrome, the Average Nearest Neighbour Analysis (ANN) was used as statistical function from ArcGIS. The obstacles found within the MM2 aerodrome were grouped into the tolerant and non-tolerant ones. However, the finding shows that MM2 aerodrome conforms to ICAO standards and recommended practices. The study thus recommends strict daily monitoring of flight route to mark objects for foundation on the non-tolerance zones.展开更多
Biomolecular self-assembly has lately emerged as an intriguing method for creating stable gas-liquid dis-persions with unique functional characteristics.In this work,protein-metal coordination complexes were designed ...Biomolecular self-assembly has lately emerged as an intriguing method for creating stable gas-liquid dis-persions with unique functional characteristics.In this work,protein-metal coordination complexes were designed as the stabilizer for generating ultrastable fire-fighting foam and creating interfacial architec-tures that were actively switched between"rigid"and"mobile"interfacial states of liquid films in re-sponse to changes in pH and bulk solution compositions(metal ions or alkyl polyglycosides).The re-flected light interferometric technique was used to check interfacial states,and the foaming kinetics and rheological response of aqueous solution and liquid foam were investigated by dynamic surface tension tests and oscillatory rheology analysis.The results showed that liquid foams with mobile films with lower yield limits had a faster spreading rate to cover the burning oil,liquid foams with semi-rigid films can-not extinguish fires due to interfacial instability,and the enhanced rheology of the foam with rigid films established a robust and impenetrable barrier to effectively suppress fuel evaporation and combustion.A new correlation between interfacial properties and the fire-fighting performance of foam was proposed,which showed that the fire-extinguishing time of foam could be well correlated by the interfacial states or film lifetime rather than classical thermodynamics entry,spreading,and bridging coefficients(ESB co-efficients).展开更多
文摘The study focuses on the spatial analysis of the threat of potential Aerodrome obstacles on flight safety operations, in Murtala Mohammed Airport, Ikeja Lagos State. The study arises from the cases of flight safety in Nigerian airports which begins from the time passengers board the flight to the take-off time and location, the taxing of the plane and ends at the landing. The research employs GIS to model the 3D obstacles of the aerodrome, which demonstrated the ability in classifying the various threats on the aerodrome. The data acquired for this study ranging from primary data which included georeferencing of the obstacles that are found along the aerodrome with a Differential Global Positioning System (DGPS) to secondary data which included all base maps and satellite images. The spatial data conversion and manipulations were done using the ArcGIS 10.3.1 software. The 3D simulation of the obstacles was done in the ArcScene environment. To examine the spatial patterns of the obstacles around the aerodrome, the Average Nearest Neighbour Analysis (ANN) was used as statistical function from ArcGIS. The obstacles found within the MM2 aerodrome were grouped into the tolerant and non-tolerant ones. However, the finding shows that MM2 aerodrome conforms to ICAO standards and recommended practices. The study thus recommends strict daily monitoring of flight route to mark objects for foundation on the non-tolerance zones.
基金Anhui provincial major science and technology project(No.202103c08020005).
文摘Biomolecular self-assembly has lately emerged as an intriguing method for creating stable gas-liquid dis-persions with unique functional characteristics.In this work,protein-metal coordination complexes were designed as the stabilizer for generating ultrastable fire-fighting foam and creating interfacial architec-tures that were actively switched between"rigid"and"mobile"interfacial states of liquid films in re-sponse to changes in pH and bulk solution compositions(metal ions or alkyl polyglycosides).The re-flected light interferometric technique was used to check interfacial states,and the foaming kinetics and rheological response of aqueous solution and liquid foam were investigated by dynamic surface tension tests and oscillatory rheology analysis.The results showed that liquid foams with mobile films with lower yield limits had a faster spreading rate to cover the burning oil,liquid foams with semi-rigid films can-not extinguish fires due to interfacial instability,and the enhanced rheology of the foam with rigid films established a robust and impenetrable barrier to effectively suppress fuel evaporation and combustion.A new correlation between interfacial properties and the fire-fighting performance of foam was proposed,which showed that the fire-extinguishing time of foam could be well correlated by the interfacial states or film lifetime rather than classical thermodynamics entry,spreading,and bridging coefficients(ESB co-efficients).