期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Surface Modification of Fire-retardant Asphalt with Silane Coupling Agent 被引量:4
1
作者 陈辉强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期310-315,共6页
The theory and approach of the surface modified of asphalt fire-retardant with silane coupling agent were introduced. The optimum silane dosage was determined, and the structure and properties of the asphalt fire-reta... The theory and approach of the surface modified of asphalt fire-retardant with silane coupling agent were introduced. The optimum silane dosage was determined, and the structure and properties of the asphalt fire-retardant before and after the surface modification were characterized by infrared spectrum and thermo gravimetric analysis. The dispersion effect of asphalt flre-retardant was studied. The influence of the surface modification on the hydrophilicity and lipophilicity of the asphalt fire-retardant was analyzed. The experimental results showed that there were physical and chemical interactions between the silane coupling agent and the asphalt fire-retardant, which reduced the surface polarity of the asphalt fire retardant. The optimum silane coupling agent dosage was 0.95% of the asphalt fire retardant. The surface modification improved the thermal stability, dispersibility and lipophilicity of the asphalt fire retardant, which enhanced the compatibility between asphalt fire retardant and asphalt. 展开更多
关键词 SILANE asphalt fire-retardant coupling agent surface modification
下载PDF
Study on fire-retardant nanocrystalline Mg-Al layered double hydroxides synthesized by microwavecrystallization method 被引量:10
2
作者 ZHANG Zejiang1, XU Chenghua1, QIU Fali1, MEI Xiujuan2, LAN Bin2 & ZHANG Shuosheng2 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China 2. Sichuan Fire Research Institute of Public Safety Ministry, Chengdu 611830, China 《Science China Chemistry》 SCIE EI CAS 2004年第6期488-498,共11页
Nanocrystalline Mg-Al layered double hydroxides with the particle size being 10—40 nm were firstly prepared by the technology of the microwave-crystallization and the vari- able-speed addition of the alkali. The obta... Nanocrystalline Mg-Al layered double hydroxides with the particle size being 10—40 nm were firstly prepared by the technology of the microwave-crystallization and the vari- able-speed addition of the alkali. The obtained samples were characterized by TEM and XRD. The roles of the microwave and addition rate of the alkali were also discussed in the present work. The thermal decomposition activation energy of the nano-LDHs was calculated according to their TG, DTG and DSC curves by the Ozawa method. The results showed that the thermal decom- position of the nano-LDHs had four steps. Thereby the decomposition model of the nano-LDHs was supposed according to the analysis of their thermal decomposition. After PS, ABS, HDPE and PVC were filled with the nano-LDHs, their LOI values could be increased up to 28, 27, 26 and 33, respectively. When the fire-retardant coating contained 1.9% of the nano-LDHs that was 0.27 times the dosage of the conventional TiO2, its fire endurance time reached 32.75min that was 7.05 min longer than that of the best coating containing TiO2 according to the model big-panel combustion test method. 展开更多
关键词 LAYERED double hydroxides nanocrystal microwave synthesis thermal decomposition fire-retardant performance.
原文传递
Fabrication of fire-retardant building materials via a hyper-crosslinking chemical conversion process from waste polystyrenes
3
作者 Changhui Liu Yuanhui Xie +2 位作者 Ding Gao Xiancong Shi Zhonghao Rao 《Energy and Built Environment》 2022年第2期226-232,共7页
Polystyrene(PS)is rich in plastic materials,but it produces a large amount of waste every year,causing a huge burden on the environment.Although PS plastic is the source of a common"white pollution"in daily ... Polystyrene(PS)is rich in plastic materials,but it produces a large amount of waste every year,causing a huge burden on the environment.Although PS plastic is the source of a common"white pollution"in daily life,it still has a high utilization value.At the same time,the flammability of PS material determines that it cannot be applicated in places where fire accidents occur frequently.As a result,its application has been greatly limited.In order to realize the efficient utilization of waste PS and broaden its scope of application,PS was modified by hyper-crosslinking in order to improve its fire-retardant performance.In this method,the PS solution with high purity was obtained by dissolving waste PS foam with 1,2-dichloroethane(DCE),and then the hyper-crosslinked polymer with high specific surface area was prepared by adding cross-linking agent formaldehyde dimethyl acetal(FDA)and a Lewis-acid catalyst ferric chloride(FeCl_(3)).Further studies showed that the effects of the amount of cross-linking agent FDA,catalyst FeCl_(3) and PS on the reaction products were different.In addition,compared the as-prepared fire-retardant materials with PS foam from the aspects of flame retardancy and thermal insulation,it can be concluded that the fire-retardant performance of the materials prepared by this method has been significantly enhanced.And it is proved that this method is feasible towards the preparation of a large number of fire-retardant composite materials by using a scale-up experiment. 展开更多
关键词 Waste polystyrene Building materials fire-retardant Hyper-crosslinking High-value added utilization
原文传递
聚丙烯纤维阻燃技术的开发与应用 被引量:3
4
作者 陈铁楼 郭德凡 曾红霞 《合成纤维工业》 CAS CSCD 1997年第6期41-44,共4页
介绍了适应于聚丙烯树脂及纤维的阻燃剂、阻燃技术,概括了国内外阻燃聚丙烯树脂及纤维生产开发现状。提出了发展和推广阻燃聚丙烯纤维的有关建议。
关键词 聚丙烯纤维 阻燃 综述
下载PDF
Recent development and challenges in enhancing fire performance on wood and wood-based composites:A 10-year review from 2012 to 2021
5
作者 Charles Michael Albert Kang Chiang Liew 《Journal of Bioresources and Bioproducts》 EI CSCD 2024年第1期27-42,共16页
Due to their durability,versatility,and aesthetic value,wood and wood-based composites are widely used as building materials.The fact that these materials are flammable,however,raises a major worry since they might ca... Due to their durability,versatility,and aesthetic value,wood and wood-based composites are widely used as building materials.The fact that these materials are flammable,however,raises a major worry since they might cause fire hazards and significant loss of life and property.The article investigates the variables that affect fire performance as well as the various fire-retardant treatments and their mechanisms.The current developments and challenges in improving the fire performance of wood and wood-based composites treated with fire-retardant materials are summarized in this paper.Nanoparticles,organic chemicals,and densification are some recent developments in fire-retardant treatments that are also emphasized.Key points from the review are summarized,along with potential areas for further research and development. 展开更多
关键词 Fire performance fire-retardant materials WOOD Wood-based composite Nanoparticles coating Surface charring Bio-based fire retardant DENSIFICATION
原文传递
Study on fire retardant mechanism of nano-LDHs in intumescent system 被引量:7
6
作者 ZHANG ZeJiang LAN Bin +1 位作者 MEI XiuJuan XU ChengHua 《Science China Chemistry》 SCIE EI CAS 2007年第3期392-396,共5页
This paper investigated the fire-retardant mechanism of the nano-LDHs in the intumescent system by the temperature programmed oxidation (TPO). Researches were also conducted to explore the function of the nano-LDHs in... This paper investigated the fire-retardant mechanism of the nano-LDHs in the intumescent system by the temperature programmed oxidation (TPO). Researches were also conducted to explore the function of the nano-LDHs in the composite fire-retardant agents in air and nitrogen atmosphere, respectively. The results indicated that the nano-LDHs species were responsible for the catalytic oxidation of the rich-carbon compound in oxygen atmosphere. In addition, the nano-LDHs species and their calcinated products at high temperature could increase the carbonaceous residue-shield of the carbon-rich materials, improve the quality and the graphitization degree of the formed char-layer, and accelerate the intumescence and expansion of the melting carbon-rich materials to a certain degree under the oxygen-free condition, leading to the carbonization and expansion of the intumescent layer. 展开更多
关键词 NANOMETER layer double HYDROXIDES (LDHs) fire-retardant MECHANISM INTUMESCENT SYSTEM
原文传递
Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fre-retardancy 被引量:8
7
作者 Jing Tian Yi Yang +3 位作者 Tiantian Xue Guojie Chao Wei Fan Tianxi Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第10期194-202,共9页
The materials with thermal insulating and fre-retardant properties are highly demanded for architectures to improve the energy efficiency.The applications of conventional inorganic insulating materials such as silica ... The materials with thermal insulating and fre-retardant properties are highly demanded for architectures to improve the energy efficiency.The applications of conventional inorganic insulating materials such as silica aerogels are restricted by their mechanical fragility and organic insulating materials are either easily ignitable or exhibit unsatisfactory thermal insulation performance.Here,we report an organic/inorganic composite aerogel with integrated double network structure,in which silica constituent homogeneously distribute in the anisotropic polyimide nanofber aerogel matrix and strong interfacial effect is formed between two components.The integrated binary network endows the polyimide/silica composite aerogels with outstanding compressibility and flexibility even with a high inorganic content of 60%,which can withstand 500 cyclic fatigue tests at a compressive strain of 50%in the radial direction.The resulting composite aerogel exhibits a combination of outstanding insulating performance with a low thermal conductivity(21.2 mW m^(-1)K^(-1))and excellent resistance to a 1200℃flame without disintegration.The high-performance polyimide/silica aerogels can decrease the risk brought by the collapse of reinforced concrete structures in a fre,demonstrating great potential as efficient building materials. 展开更多
关键词 POLYIMIDE SILICA AEROGEL Thermal insulation fire-retardancy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部