This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% im...This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% impurity concentration. Our comprehensive analysis encompasses structural properties, electronic band structures, and charge density distributions. The optimized lattice constant and band gap energy of 3C-SiC were found to be 4.373 Å and 1.36 eV respectively, which is in agreement with previous research (Bui, 2012;Muchiri et al., 2018). Our results show that B doping narrows the band gap, enhances electrical conductivity, and influences charge transfer interactions. The charge density analysis reveals substantial interactions between B dopants and surrounding carbon atoms. This work not only enhances our understanding of the material’s electronic properties, but also highlights the importance of charge density analysis for characterizing charge transfer mechanisms and their implications in the 3C-SiC semiconductors.展开更多
Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particu...Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particular,one-dimensional(1D)atomic wires(AWs)exfoliating from 1D van der Waals(vdW)bulks are more promising in next generation nanometer(nm)even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states.Although several 1D AWs have been experimentally prepared,few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs.Herein,367 kinds of 1D AWs have been screened and the corresponding computational database including structures,electronic structures,magnetic states,and stabilities of these 1D AWs has been organized and established.Among these systems,unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated.More significantly,rich quantum states emerge,such as 1D semiconductors,1D metals,1D semimetals,and 1D magnetism.This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials.The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.展开更多
The structural, electronic, optical and thermodynamic properties of Mo2Ga2C are investigated using density func- tional theory (DFT) within the generalized gradient approximation (GGA). The optimized crystal struc...The structural, electronic, optical and thermodynamic properties of Mo2Ga2C are investigated using density func- tional theory (DFT) within the generalized gradient approximation (GGA). The optimized crystal structure is obtained and the lattice parameters are compared with available experimental data. The electronic density of states (DOS) is calculated and analyzed. The metallic behavior for the compound is confirmed and the value of DOS at Fermi level is 4.2 states per unit cell per eV. Technologically important optical parameters (e.g., dielectric function, refractive index, absorption coefficient, photo conductivity, reflectivity, and loss function) are calculated for the first time. The study of dielectric constant (ε1) indicates the Drude-like behavior. The absorption and conductivity spectra suggest that the compound is metallic. The reflectance spectrum shows that this compound has the potential to be used as a solar reflector. The thermodynamic properties such as the temperature and pressure dependent bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient of Mo2Ga2C MAX phase are derived from the quasi-harmonic Debye model with phononic effect also for the first time. Analysis of Tc expression using available parameter values (DOS, Debye temperature, atomic mass, etc.) suggests that the compound is less likely to be superconductor.展开更多
To investigate the origin of the strong dependence of martensitic transformation temperature on composition, the elastic properties of high temperature B2 phases of both NiTi and NiAI were calculated by a first-princi...To investigate the origin of the strong dependence of martensitic transformation temperature on composition, the elastic properties of high temperature B2 phases of both NiTi and NiAI were calculated by a first-principle method, the exact-muffin orbital method within coherent potential approximation. In the composition range of 50-56 at. pct Ni of NiTi and 60-70 at. pct Ni of NiAI in which martensitic transformation occurs, non-basalplane shear modulus c44 increases with increasing Ni content, while basal-plane shear modulus c' decreases. In the above composition ranges however the transformation temperature of NiAI increases with increasing Ni content while that of NiTi decreases from experimental observation. The softening of c' is experimentally observed only in NiAI, and the decrease of c' with increasing Ni content is responsible for the increase of transformation temperature. The result of the present work demonstrates that, besides c', c44 also influences the martensitic transformation of NiTi and plays quite important a role.展开更多
The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-...The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-principles plane-wave pseudo-potential method based on the den- sity functional theory. Sn-Zn films were also deposited on copper foils by an electroless plating technique. The actual composition and chemical characters were explored by scanning electron microscopy (SEM), X-ray diffraction (XRD), plasma atomic emission spectrometry (ICP), and constant current charge/discharge measurements (CC). The results show that separation phases with tin and zinc including a small quantity of Cu6Sn5 phase were obtained, the initial lithium insertion capacity of the Sn-Zn film was 661 mAh/g, and obvious potential pla- teaus of about 0.4 V and 0.7 V were displayed, which is in accordance with the results of theoretical calculations. The capacity of the Sn-Zn film decreased seriously with the increase of cycle number.展开更多
Using first-principles calculations, we systematically study the dissociations of 02 molecules on different ultrathin Pb(lll) films. According to our previous work revealing the molecular adsorption precursor states...Using first-principles calculations, we systematically study the dissociations of 02 molecules on different ultrathin Pb(lll) films. According to our previous work revealing the molecular adsorption precursor states for O2, we further explore why there are two nearly degenerate adsorption states on Pb(lll) ultrathin films, but no precursor adsorption states existing at all on Mg(0001) and Al(lll) surfaces. The reason is concluded to be the different surface electronic structures. For the O2 dissociation, we consider both the reaction channels from gas-like and molecularly adsorbed O2 molecules. We find that the energy barrier for O2 dissociation from the molecular adsorption precursor states is always smaller than that from O2 gas. The most energetically favorable dissociation process is found to be the same on different Pb(lll) fihns, and the energy barriers are found to be influenced by the quantum size effects of Pb(lll) films.展开更多
Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic cons...Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data.展开更多
Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+ Incu) CulnGaSe2/CdS interfaces theoretically, espec...Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+ Incu) CulnGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+ InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CulnGaSe2 and CdS band gap regions are mainly composed of interracial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CulnGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.展开更多
First-principles calculations were performed to investigate the mechanical properties of ZnO nanowires and to study the doping and size effects. A series of strains were applied to ZnO nanowires in the axial direction...First-principles calculations were performed to investigate the mechanical properties of ZnO nanowires and to study the doping and size effects. A series of strains were applied to ZnO nanowires in the axial direction and the elastic moduli of ZnO nanowires were obtained from the energy versus strain curves. Pure and Mn-doped ZnO nanowires with three different diameters (1.14, 1.43, and 1.74 nm) were studied. It is found that the elastic moduli of the ZnO nanowires are 146.5, 146.6, and 143.9 GPa, respectively, which are slightly larger than that of the bulk (140.1 GPa), and they increase as the diameter decreases. The elastic moduli of the Mn-doped ZnO nanowires are 137.6, 141.8, and 141.0 GPa, which are slightly lower than those of the undoped ones by 6.1%, 3.3%, and 2.0%, respectively. The mechanisms of doping and size effect were discussed in terms of chemical bonding and geometry considerations.展开更多
The elastic, magnetoelastic, and phonon properties of Ni2FeGa were investigated through first-principles calculations. The obtained elastic and phonon dispersion curves for the austenite and martensite phases agree we...The elastic, magnetoelastic, and phonon properties of Ni2FeGa were investigated through first-principles calculations. The obtained elastic and phonon dispersion curves for the austenite and martensite phases agree well with available the- oretical and experimental results. The isotropic elastic moduli are also predicted along with the polycrystalline aggregate properties including the bulk modulus, shear modulus, Young's modulus, and Poisson's ratio. The Pugh ratio indicates that Ni2FeGa shows ductility, especially the austenite phase, which is consistent with the experimental results. The Debye tem- peratures of the Ni2FeGa in the austenite and martensite phases are 344 K and 392 K, respectively. It is predicted that the magnetoelastic coefficient is -5.3 x 10^6 J/m3 and magnetostriction coefficient is between 135 and 55 ppm in the Ni2FeGa austenite phase.展开更多
The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the ...The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.展开更多
The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzman...The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.展开更多
Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored...Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory.The results indicate that the direct band gap(1.95 e V)of the Ga N-MoS2 HS is lower than the individual band gaps of both the GaN layer(3.48 e V)and the MoS2 layer(2.03 eV)based on HSE06 hybrid functional calculations.Specifically,the GaN-MoS2 HS is a typical type-II band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency.Under tensile or compressive strain,the direct band gap of the GaN-MoS2 HS undergoes redshifts.Additionally,the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5%or-5%.Therefore,the results reported above can be used to expand the application of Ga N-MoS2 HSs to photovoltaic cells and photocatalysts.展开更多
The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane ...The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane is staler against the metal adatoms than silicene.Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene.Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed.However,the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate.Combining the adsorption energy with the diffusion energy barriers,it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage.In order to avoid forming a metal cluster,we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane.Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.展开更多
The structural, mechanical and thermodynamics properties of cubic zirconium oxide (cZrO2) were investigated in this study using ab initio or first-principles calculations. Density functional theory was used to optimiz...The structural, mechanical and thermodynamics properties of cubic zirconium oxide (cZrO2) were investigated in this study using ab initio or first-principles calculations. Density functional theory was used to optimize the crystal structure of cZrO2 and thereafter, simulations were conducted to predict the lattice parameters and elastic constants. The Zr-O bond distance was calculated as 2.1763 Å with unit cell density of 6.4179 g/cm3. The data obtained were used to determine Young’s modulus, bulk modulus, Poisson’s ratio and hardness of cZrO2 as 545.12 GPa, 136.464 GPa, 0.1898 and 12.663(Hv) respectively. The result indicates that cZrO2 is mechanically stable with thermodynamics properties of a refractory material having potential for structural and catalytic applications in various forms as a nanomaterial.展开更多
The global greenhouse effect makes it urgent to deal with the increasing greenhouse gases. In this paper the performance of MgO-decorated carbon nanotubes for CO2 adsorption is investigated through first principles ca...The global greenhouse effect makes it urgent to deal with the increasing greenhouse gases. In this paper the performance of MgO-decorated carbon nanotubes for CO2 adsorption is investigated through first principles calculations. The results show that the MgO-decorated carbon nanotubes can adsorb CO2 well and are relatively insensitive to O2 and N2 at the same time. The binding energy arrives at 1.18 eV for the single-MgO-decorated carbon nanotube adsorbing one CO2 molecule, while the corresponding values for O2 and N2 are 0.55 eV and 0.06 eV, respectively. In addition, multi-molecule adsorption is also proved to be very satisfactory. These results indicate that MgO-decorated carbon nanotubes have great potential applications in industrial and environmental processes.展开更多
In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are foun...In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.展开更多
Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their ma...Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their magnetic properties, such as the half metallicity and the crystal-cell magnetic moments are investigated. The Sr4X3N possibly have higher Curie temperatures and have more stable half metallicity than the Sr4X3C. Their crystal-cell magnetic moments are all 1.00 μB. The crystal-cell magnetic moments and the half metallicity arise mainly from the N ions. The main mechanism is the strong covalent interaction leading to the sp2 hybridized orbitals in the Sr4X3N. Then two Sr-5s and three N-2p electrons enter into three sp2 hybridized orbitals. Among these five electrons, four electrons are paired and one is unpaired, so there are three spin-up electrons and two spin-down electrons in these sp2 hybridized orbitals.展开更多
Graphene is an ideal reinforcing phase for a high-performance composite filler,which is of great theoretical and practical significance for improving the wettability and reliability of the filler.However,the poor adso...Graphene is an ideal reinforcing phase for a high-performance composite filler,which is of great theoretical and practical significance for improving the wettability and reliability of the filler.However,the poor adsorption characteristics between graphene and the silver base filler significantly affect the application of graphene filler in the brazing field.It is a great challenge to improve the adsorption characteristics between a graphene and silver base filler.To solve this issue,the adsorption characteristic between graphene and silver was studied with first principle calculation.The effects of Ga,Mo,and W on the adsorption properties of graphene were explored.There are three possible adsorbed sites,the hollow site(H),the bridge site(B),and the top site(T).Based on this research,the top site is the most preferentially adsorbed site for Ag atoms,and there is a strong interaction between graphene and Ag atoms.Metal element doping enhances local hybridization between C or metal atoms and Ag.Furthermore,compared with other doped structures(Ga and Mo),W atom doping is the most stable adsorption structure and can also improve effective adsorption characteristic performance between graphene and Ag.展开更多
Sulfide nanocrystals and their composites have shown great potential in the thermoelectric(TE)field due to their extremely low thermal conductivity.Recently a solid and hollow metastable Au2S nanocrystalline has been ...Sulfide nanocrystals and their composites have shown great potential in the thermoelectric(TE)field due to their extremely low thermal conductivity.Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized.Herein,we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory,which provides the basis for its further experimental studies.Our results indicate that the highly twofold degeneracy of the bands appears at theΓpoint in the Brillouin zone,resulting in a high Seebeck coefficient.Besides,Au2S exhibits an ultra-low lattice thermal conductivity(~0.88 W·m^-1·K^-1 at 700 K).At 700 K,the thermoelectric figure of merit of the optimal p-type doping is close to 1.76,which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K.Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications.展开更多
文摘This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% impurity concentration. Our comprehensive analysis encompasses structural properties, electronic band structures, and charge density distributions. The optimized lattice constant and band gap energy of 3C-SiC were found to be 4.373 Å and 1.36 eV respectively, which is in agreement with previous research (Bui, 2012;Muchiri et al., 2018). Our results show that B doping narrows the band gap, enhances electrical conductivity, and influences charge transfer interactions. The charge density analysis reveals substantial interactions between B dopants and surrounding carbon atoms. This work not only enhances our understanding of the material’s electronic properties, but also highlights the importance of charge density analysis for characterizing charge transfer mechanisms and their implications in the 3C-SiC semiconductors.
基金the National Key Research and Development Program of China(Grant No.2017YFE0129000)the National Natural Science Foundation of China(Grant Nos.51871121,11874223,and 11404172).
文摘Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particular,one-dimensional(1D)atomic wires(AWs)exfoliating from 1D van der Waals(vdW)bulks are more promising in next generation nanometer(nm)even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states.Although several 1D AWs have been experimentally prepared,few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs.Herein,367 kinds of 1D AWs have been screened and the corresponding computational database including structures,electronic structures,magnetic states,and stabilities of these 1D AWs has been organized and established.Among these systems,unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated.More significantly,rich quantum states emerge,such as 1D semiconductors,1D metals,1D semimetals,and 1D magnetism.This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials.The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.
文摘The structural, electronic, optical and thermodynamic properties of Mo2Ga2C are investigated using density func- tional theory (DFT) within the generalized gradient approximation (GGA). The optimized crystal structure is obtained and the lattice parameters are compared with available experimental data. The electronic density of states (DOS) is calculated and analyzed. The metallic behavior for the compound is confirmed and the value of DOS at Fermi level is 4.2 states per unit cell per eV. Technologically important optical parameters (e.g., dielectric function, refractive index, absorption coefficient, photo conductivity, reflectivity, and loss function) are calculated for the first time. The study of dielectric constant (ε1) indicates the Drude-like behavior. The absorption and conductivity spectra suggest that the compound is metallic. The reflectance spectrum shows that this compound has the potential to be used as a solar reflector. The thermodynamic properties such as the temperature and pressure dependent bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient of Mo2Ga2C MAX phase are derived from the quasi-harmonic Debye model with phononic effect also for the first time. Analysis of Tc expression using available parameter values (DOS, Debye temperature, atomic mass, etc.) suggests that the compound is less likely to be superconductor.
基金Part of the calculations in this work was performed ona Shenteng 6800 supercomputer at CNIC, China.
文摘To investigate the origin of the strong dependence of martensitic transformation temperature on composition, the elastic properties of high temperature B2 phases of both NiTi and NiAI were calculated by a first-principle method, the exact-muffin orbital method within coherent potential approximation. In the composition range of 50-56 at. pct Ni of NiTi and 60-70 at. pct Ni of NiAI in which martensitic transformation occurs, non-basalplane shear modulus c44 increases with increasing Ni content, while basal-plane shear modulus c' decreases. In the above composition ranges however the transformation temperature of NiAI increases with increasing Ni content while that of NiTi decreases from experimental observation. The softening of c' is experimentally observed only in NiAI, and the decrease of c' with increasing Ni content is responsible for the increase of transformation temperature. The result of the present work demonstrates that, besides c', c44 also influences the martensitic transformation of NiTi and plays quite important a role.
基金supported by the National Nature Science Foundation of China (No. 50771046)the Foundation from Department of Education of Guangdong Province (No. C10179)
文摘The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-principles plane-wave pseudo-potential method based on the den- sity functional theory. Sn-Zn films were also deposited on copper foils by an electroless plating technique. The actual composition and chemical characters were explored by scanning electron microscopy (SEM), X-ray diffraction (XRD), plasma atomic emission spectrometry (ICP), and constant current charge/discharge measurements (CC). The results show that separation phases with tin and zinc including a small quantity of Cu6Sn5 phase were obtained, the initial lithium insertion capacity of the Sn-Zn film was 661 mAh/g, and obvious potential pla- teaus of about 0.4 V and 0.7 V were displayed, which is in accordance with the results of theoretical calculations. The capacity of the Sn-Zn film decreased seriously with the increase of cycle number.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.90921003,10904004 and 60776063)the Fundamental Research Funds for the Central Universities,China(Grant No.JD1109)
文摘Using first-principles calculations, we systematically study the dissociations of 02 molecules on different ultrathin Pb(lll) films. According to our previous work revealing the molecular adsorption precursor states for O2, we further explore why there are two nearly degenerate adsorption states on Pb(lll) ultrathin films, but no precursor adsorption states existing at all on Mg(0001) and Al(lll) surfaces. The reason is concluded to be the different surface electronic structures. For the O2 dissociation, we consider both the reaction channels from gas-like and molecularly adsorbed O2 molecules. We find that the energy barrier for O2 dissociation from the molecular adsorption precursor states is always smaller than that from O2 gas. The most energetically favorable dissociation process is found to be the same on different Pb(lll) fihns, and the energy barriers are found to be influenced by the quantum size effects of Pb(lll) films.
基金supported by the National Natural Science Foundation of China(Grant No.51071032)
文摘Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data.
基金supported by the National Natural Science Foundation of China(Grant Nos.11364025 and 11164014)the Gansu Science and Technology PillarProgram,China(Grant No.1204GKCA057)
文摘Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+ Incu) CulnGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+ InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CulnGaSe2 and CdS band gap regions are mainly composed of interracial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CulnGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.
基金financially supported by the National Basic Research Priorities Program of China (No.2007CB936201)the Major Projectof International Cooperation and Exchanges (No.2006DFB51000)the National Natural Science Foundation of China (Nos.50972009 and50972011)
文摘First-principles calculations were performed to investigate the mechanical properties of ZnO nanowires and to study the doping and size effects. A series of strains were applied to ZnO nanowires in the axial direction and the elastic moduli of ZnO nanowires were obtained from the energy versus strain curves. Pure and Mn-doped ZnO nanowires with three different diameters (1.14, 1.43, and 1.74 nm) were studied. It is found that the elastic moduli of the ZnO nanowires are 146.5, 146.6, and 143.9 GPa, respectively, which are slightly larger than that of the bulk (140.1 GPa), and they increase as the diameter decreases. The elastic moduli of the Mn-doped ZnO nanowires are 137.6, 141.8, and 141.0 GPa, which are slightly lower than those of the undoped ones by 6.1%, 3.3%, and 2.0%, respectively. The mechanisms of doping and size effect were discussed in terms of chemical bonding and geometry considerations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174030 and 11504020)the Fundamental Research Funds for the Central Universities of China(Grant No.FRF-TP-16-064A1,06500031)
文摘The elastic, magnetoelastic, and phonon properties of Ni2FeGa were investigated through first-principles calculations. The obtained elastic and phonon dispersion curves for the austenite and martensite phases agree well with available the- oretical and experimental results. The isotropic elastic moduli are also predicted along with the polycrystalline aggregate properties including the bulk modulus, shear modulus, Young's modulus, and Poisson's ratio. The Pugh ratio indicates that Ni2FeGa shows ductility, especially the austenite phase, which is consistent with the experimental results. The Debye tem- peratures of the Ni2FeGa in the austenite and martensite phases are 344 K and 392 K, respectively. It is predicted that the magnetoelastic coefficient is -5.3 x 10^6 J/m3 and magnetostriction coefficient is between 135 and 55 ppm in the Ni2FeGa austenite phase.
基金Project supported by the Foundation of Key Laboratory of National Defense Science and Technology for Shock Wave and Detonation Physics,Chinathe Science and Research Foundation of Educational Committee of Sichuan Province,China (Grant No. 09ZC048)
文摘The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.
基金Funded by National Natural Science Foundation of China(Nos.81371973 and 11304090)Wuhan Municipal Health and Family Planning Commission Foundation of China(No.WX15C10)
文摘The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.
基金Project supported by the National Natural Science Foundation of China(Grant No.11864011)the Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB390)the Doctoral Fund Project of Hubei Minzu University,China(Grant No.MY2017B015)
文摘Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory.The results indicate that the direct band gap(1.95 e V)of the Ga N-MoS2 HS is lower than the individual band gaps of both the GaN layer(3.48 e V)and the MoS2 layer(2.03 eV)based on HSE06 hybrid functional calculations.Specifically,the GaN-MoS2 HS is a typical type-II band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency.Under tensile or compressive strain,the direct band gap of the GaN-MoS2 HS undergoes redshifts.Additionally,the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5%or-5%.Therefore,the results reported above can be used to expand the application of Ga N-MoS2 HSs to photovoltaic cells and photocatalysts.
基金Project supported by the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20152ACB21014,20151BAB202006,and 20142BAB212002)the Fund from the Jiangxi Provincial Educational Committee,China(Grant No.GJJ14254)supported by the Oversea Returned Project from the Ministry of Education,China
文摘The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane is staler against the metal adatoms than silicene.Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene.Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed.However,the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate.Combining the adsorption energy with the diffusion energy barriers,it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage.In order to avoid forming a metal cluster,we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane.Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.
文摘The structural, mechanical and thermodynamics properties of cubic zirconium oxide (cZrO2) were investigated in this study using ab initio or first-principles calculations. Density functional theory was used to optimize the crystal structure of cZrO2 and thereafter, simulations were conducted to predict the lattice parameters and elastic constants. The Zr-O bond distance was calculated as 2.1763 Å with unit cell density of 6.4179 g/cm3. The data obtained were used to determine Young’s modulus, bulk modulus, Poisson’s ratio and hardness of cZrO2 as 545.12 GPa, 136.464 GPa, 0.1898 and 12.663(Hv) respectively. The result indicates that cZrO2 is mechanically stable with thermodynamics properties of a refractory material having potential for structural and catalytic applications in various forms as a nanomaterial.
基金Project supported by the National Natural Science foundation of China (Grant No.60925016)
文摘The global greenhouse effect makes it urgent to deal with the increasing greenhouse gases. In this paper the performance of MgO-decorated carbon nanotubes for CO2 adsorption is investigated through first principles calculations. The results show that the MgO-decorated carbon nanotubes can adsorb CO2 well and are relatively insensitive to O2 and N2 at the same time. The binding energy arrives at 1.18 eV for the single-MgO-decorated carbon nanotube adsorbing one CO2 molecule, while the corresponding values for O2 and N2 are 0.55 eV and 0.06 eV, respectively. In addition, multi-molecule adsorption is also proved to be very satisfactory. These results indicate that MgO-decorated carbon nanotubes have great potential applications in industrial and environmental processes.
基金the Higher Education Commission of Pakistan for partial funding.
文摘In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.
基金Project supported by Chongqing Natural Science Foundation,China (Grant Nos.CSCT2010BB4405 and CSTC2008BB4083)the Doctoral Foundation of Chongqing University of Posts and Telecommunications,China(Grant No.A2008-63)
文摘Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their magnetic properties, such as the half metallicity and the crystal-cell magnetic moments are investigated. The Sr4X3N possibly have higher Curie temperatures and have more stable half metallicity than the Sr4X3C. Their crystal-cell magnetic moments are all 1.00 μB. The crystal-cell magnetic moments and the half metallicity arise mainly from the N ions. The main mechanism is the strong covalent interaction leading to the sp2 hybridized orbitals in the Sr4X3N. Then two Sr-5s and three N-2p electrons enter into three sp2 hybridized orbitals. Among these five electrons, four electrons are paired and one is unpaired, so there are three spin-up electrons and two spin-down electrons in these sp2 hybridized orbitals.
基金the Extracurricular Open Experiment of Southwest Petroleum University(No.KSZ18513)the State Key Program of National Natural Science Foundation of China(No.51474181).
文摘Graphene is an ideal reinforcing phase for a high-performance composite filler,which is of great theoretical and practical significance for improving the wettability and reliability of the filler.However,the poor adsorption characteristics between graphene and the silver base filler significantly affect the application of graphene filler in the brazing field.It is a great challenge to improve the adsorption characteristics between a graphene and silver base filler.To solve this issue,the adsorption characteristic between graphene and silver was studied with first principle calculation.The effects of Ga,Mo,and W on the adsorption properties of graphene were explored.There are three possible adsorbed sites,the hollow site(H),the bridge site(B),and the top site(T).Based on this research,the top site is the most preferentially adsorbed site for Ag atoms,and there is a strong interaction between graphene and Ag atoms.Metal element doping enhances local hybridization between C or metal atoms and Ag.Furthermore,compared with other doped structures(Ga and Mo),W atom doping is the most stable adsorption structure and can also improve effective adsorption characteristic performance between graphene and Ag.
基金the National Natural Science Foundation of China(Grant Nos.11504312,11775102,and 11805088)the National Basic Research Program of China(Grant No.2015CB921103)+2 种基金China Postdoctoral Science Foundation(Grant No.2018M641477)Guangdong Provincial Department of Science and Technology,China(Grant No.2018A0303100013)the Fundamental Research Funds for the Central Universities,China(Lanzhou University,Grant No.lzujbky-2018-19).
文摘Sulfide nanocrystals and their composites have shown great potential in the thermoelectric(TE)field due to their extremely low thermal conductivity.Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized.Herein,we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory,which provides the basis for its further experimental studies.Our results indicate that the highly twofold degeneracy of the bands appears at theΓpoint in the Brillouin zone,resulting in a high Seebeck coefficient.Besides,Au2S exhibits an ultra-low lattice thermal conductivity(~0.88 W·m^-1·K^-1 at 700 K).At 700 K,the thermoelectric figure of merit of the optimal p-type doping is close to 1.76,which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K.Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications.