期刊文献+
共找到152,719篇文章
< 1 2 250 >
每页显示 20 50 100
Community Knowledge about Bleeding Control in Jazan, KSA: Is There a Need for First Aid Educational Programs
1
作者 Md Mazharul Hoque Hamoud Yahya Alsuriha +10 位作者 Mohamed E. Moukhyer Bahja Siddig Mohamed Mubarak Almaki Amna Moukhyer Fawaz Yahya Masswadi Mofareh Salman Harubi Elias Yosef Modabish Talal Omar Khasawi Yaser Mohammed Hantool Mohammed Awaji Mohammed Madkhali Aziza Mukhayer 《Journal of Biosciences and Medicines》 2024年第6期64-84,共21页
The current study aimed to evaluate the first aid knowledge and general awareness of bleeding control, and their relations with different variables among the population of Jazan City, Saudi Arabia, in 2023. A cross-se... The current study aimed to evaluate the first aid knowledge and general awareness of bleeding control, and their relations with different variables among the population of Jazan City, Saudi Arabia, in 2023. A cross-sectional study was conducted in Jazan City, Saudi Arabia between April 2023 and May 2023. Participants, >13 years old, living in Jazan City, were self-enrolled. Data collection was carried out by distributing a self-reported online survey questionnaire via email and social media apps. A validated, pretested online self-report questionnaire was used for data collection, with data analysis performed using (MS) Excel 2022 and SPSS version 26. A Chi-square test was used to determine the association of sociodemographic variables and Bleeding Control (BC) knowledge with, significance set at p < 0.05. A total of 250 participants completed the questionnaire, predominantly aged between 16 - 25 years, with 152 (60.8%) being male, and about 90% being Saudi citizens. Only 53 (21.2%) participated in previous first aid training concentrating on bleeding control. Only 76 (30.4%) of participants had good knowledge, while 131 (52.4%) exhibited positive attitude towards BC first aid. There were no statistically significant associations between BC knowledge and age, gender, occupation, nationality, and education. However, a significant association was observed between previous BC training and knowledge (Chi-test = 40.373, d.f = 1, p = 0.000) at p < 0.05. Conclusion: The prevalence of poor knowledge of bleeding control among community members in Jazan City was high. The findings of this study should be carefully considered by various healthcare organizations to implement educational first-aid programs and activities aimed at enhancing community awareness and knowledge of bleeding control. 展开更多
关键词 INJURY Uncontrolled Bleeding first Aid knowledge ATTITUDE Jazan City
下载PDF
Community Knowledge and Attitude about Burns First Aid (BFA) in Jazan, Saudi Arabia
2
作者 Md. Mazharul Hoque Mohamed E. Moukhyer +9 位作者 Nizar A. Khamjan Bahja Al Siddig Elsie Maguen Shane Alam Abdulrahman Ibrahim Ali Hakami Siraj Yahya Mohammed Mobarki Bandar Hassan Sulaiman Ghazwani Ayman Abdulrhman Alhathiq Lamyaa El Hassan Aziza Mukhayer 《Journal of Biosciences and Medicines》 2024年第4期135-148,共14页
Introduction and Significance: Burn injury (BI) is a considerable health issue which is responsible for around 300,000 deaths and affecting about 11 million people every year worldwide. In Saudi Arabia, the prevalence... Introduction and Significance: Burn injury (BI) is a considerable health issue which is responsible for around 300,000 deaths and affecting about 11 million people every year worldwide. In Saudi Arabia, the prevalence of BIs array from 112 to 518 per 100,000 per year. The appropriate awareness of performing first aid could facilitate to improve the outcomes of burns. Purpose and Objectives: To appraise the community that acknowledges burns, first aid, and associated factors among the community population in Jazan City, Saudi Arabia. The paper aims to identify limitations to encourage additional research and persuade legislators to develop improved burn-injury care recommendations and training programs. Materials and Methods: An observational-based sample survey was conducted among the people who live in Jazan City aging 13 years or more, during April 5 to May 5, 2023. Data collection was done by a validated online self-administrated questionnaire sent randomly to community members in different parts of Jazan City via social media platforms. Collected data were coded and cleaned by an excel program, and finally exported on SPSS 26.0 software. The variables were analyzed using descriptive statistics like frequencies and percentages. Also, the Chi-square test was used to investigate the relation between different variables, with a significance value of P Results: This study included 243 participants (about 62%) among them were mostly male participants (151) having a university degree. The majority of participants 75% did not take any form of BFA training in the past. This study shows that 69.9% of the participants have inadequate awareness, despite 72% having a constructive attitude towards burn first aid. Previous burn-related first aid training was significantly associated with participants’ knowledge of BFA at a p-value less than 0.05. Conclusion: This study indicates a high frequency of Jazan population having inadequate knowledge of burn first aid despite the high prevalence of a favorable attitude. There is a need to develop an effective nationwide burn prevention program and early burn first aid treatment in Saudi Arabia and promote a consistent guideline for burn first aid. 展开更多
关键词 Burn Injury (BI) Burns first Aid knowledge first Aid Training Jazan City
下载PDF
A Survey on the Current Situation of Prehospital First Aid about Knowledge, Belief and Behavior among University Students in Jingzhou
3
作者 Tianyue Zhang Hong Zhou +1 位作者 Chenyang Xu Juan Zhou 《Open Journal of Applied Sciences》 2024年第5期1251-1261,共11页
Objective: To understand the current situation of prehospital first aid knowledge, attitude and behavior of university students in Jingzhou City. Methods: A prehospital first aid knowledge questionnaire and the conven... Objective: To understand the current situation of prehospital first aid knowledge, attitude and behavior of university students in Jingzhou City. Methods: A prehospital first aid knowledge questionnaire and the convenience sampling method were used to survey 307 university students in Jingzhou City. Results: The mean score of prehospital first aid knowledge of university students in Jingzhou City was 12.85 ± 2.643, the mean score of attitude was 50.73 ± 4.114, and the mean score of behavior was 39.05 ± 8.898;There was a statistically significant difference in the scores of prehospital first aid knowledge, attitude, and behavior of university students depending on whether or not they had received prehospital first aid training (P P Conclusion: Jingzhou University students have a positive attitude toward pre-hospital first aid, but the knowledge level and behavior are low, which suggests that the government, society and the school should create good conditions to promote the improvement of pre-hospital first aid knowledge and ability. 展开更多
关键词 Prehospital first Aid University Student knowledge ATTITUDE BEHAVIORS
下载PDF
Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network 被引量:1
4
作者 Arnab Dey Samit Biswas Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2024年第5期3067-3087,共21页
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i... Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis. 展开更多
关键词 Workout action recognition video stream action recognition residual network GRU ATTENTION
下载PDF
Heterogeneous Image Knowledge Driven Visual Perception 被引量:1
5
作者 Lan Yan Wenbo Zheng Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期255-257,共3页
Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on het... Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous image knowledge,i.e.,the domain knowledge associated with specific vision tasks,to better address the corresponding visual perception problems. 展开更多
关键词 VISUAL VISUAL knowledge
下载PDF
Multi-Modal Military Event Extraction Based on Knowledge Fusion
6
作者 Yuyuan Xiang Yangli Jia +1 位作者 Xiangliang Zhang Zhenling Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第10期97-114,共18页
Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event eleme... Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data. 展开更多
关键词 Event extraction MULTI-MODAL knowledge fusion pre-trained models
下载PDF
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
7
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 knowledge sharing Internet of Vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
下载PDF
A Guide for Action in Upholding Rule-Based Self-Governance over the Communist Party of China and Strengthening the Institutional Building of Intraparty Rules and Regulation
8
作者 《Contemporary World》 2023年第4期44-48,共5页
Since the Party’s 18th National Congress,the CPC Central Committee with Comrade Xi Jinping at its core has taken institutional construction of Intraparty Rules and Regulations of the Communist Party of China as long-... Since the Party’s 18th National Congress,the CPC Central Committee with Comrade Xi Jinping at its core has taken institutional construction of Intraparty Rules and Regulations of the Communist Party of China as long-term and fundamental measures for rule-based governance over the party.General Secretary Xi Jinping has made a series of important propositions and profound theses on rule-based Party governance. 展开更多
关键词 PARTY COMMUNIST action
下载PDF
Knowledge-enriched joint-learning model for implicit emotion cause extraction
9
作者 Chenghao Wu Shumin Shi +1 位作者 Jiaxing Hu Heyan Huang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期118-128,共11页
Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without an... Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without any explicit emotional keywords,which appears more frequently in application scenarios.The lack of explicit emotion information makes it extremely hard to extract emotion causes only with the local context.Moreover,an entire event is usually across multiple clauses,while existing work merely extracts cause events at clause level and cannot effectively capture complete cause event information.To address these issues,the events are first redefined at the tuple level and a span-based tuple-level algorithm is proposed to extract events from different clauses.Based on it,a corpus for implicit emotion cause extraction that tries to extract causes of implicit emotions is constructed.The authors propose a knowledge-enriched jointlearning model of implicit emotion recognition and implicit emotion cause extraction tasks(KJ-IECE),which leverages commonsense knowledge from ConceptNet and NRC_VAD to better capture connections between emotion and corresponding cause events.Experiments on both implicit and explicit emotion cause extraction datasets demonstrate the effectiveness of the proposed model. 展开更多
关键词 emotion cause extraction external knowledge fusion implicit emotion recognition joint learning
下载PDF
基于LDA主题模型的GitHub Actions工作流项目推荐算法
10
作者 聂耀明 陈克豪 +1 位作者 程伟 刘杨 《软件导刊》 2024年第3期34-40,共7页
在CI/CD实践中,自动化已成为软件开发实践中的一种规范。GitHub引入GitHub Actions为软件维护者提供自动化的持续集成工作流方案,尽管其为开发者提供了诸多便利,GitHub社区也提供了许多第三方的GitHub Actions服务,但仍然只有极少的项... 在CI/CD实践中,自动化已成为软件开发实践中的一种规范。GitHub引入GitHub Actions为软件维护者提供自动化的持续集成工作流方案,尽管其为开发者提供了诸多便利,GitHub社区也提供了许多第三方的GitHub Actions服务,但仍然只有极少的项目在使用。为了满足开发人员对工作流自动化的需求,减少非开发任务工作量,提出一种基于隐含狄利克雷分布(LDA)主题模型和Jensen-Shannon距离的GitHub Actions工作流项目推荐算法。通过对GitHub Actions存储库的README文件进行主题建模,将GitHub的事件描述文本和用户输入作为模型输入,为正在开发的代码仓库推荐GitHub Actions服务。将该推荐模型与标准的基于余弦相似度的方法进行比较的实验结果表明,该方法能有效改善开源软件仓库的推荐精度。 展开更多
关键词 GitHub actions LDA 工作流 README 代码仓库推荐
下载PDF
A new evolutional model for institutional field knowledge flow network
11
作者 Jinzhong Guo Kai Wang +1 位作者 Xueqin Liao Xiaoling Liu 《Journal of Data and Information Science》 CSCD 2024年第1期101-123,共23页
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose... Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units. 展开更多
关键词 knowledge flow networks Evolutionary mechanism BA model knowledge units
下载PDF
A Temporal Knowledge Graph Embedding Model Based on Variable Translation
12
作者 Yadan Han Guangquan Lu +3 位作者 Shichao Zhang Liang Zhang Cuifang Zou Guoqiu Wen 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1554-1565,共12页
Knowledge representation learning(KRL)aims to encode entities and relationships in various knowledge graphs into low-dimensional continuous vectors.It is popularly used in knowledge graph completion(or link prediction... Knowledge representation learning(KRL)aims to encode entities and relationships in various knowledge graphs into low-dimensional continuous vectors.It is popularly used in knowledge graph completion(or link prediction)tasks.Translation-based knowledge representation learning methods perform well in knowledge graph completion(KGC).However,the translation principles adopted by these methods are too strict and cannot model complex entities and relationships(i.e.,N-1,1-N,and N-N)well.Besides,these traditional translation principles are primarily used in static knowledge graphs and overlook the temporal properties of triplet facts.Therefore,we propose a temporal knowledge graph embedding model based on variable translation(TKGE-VT).The model proposes a new variable translation principle,which enables flexible transformation between entities and relationship embedding.Meanwhile,this paper considers the temporal properties of both entities and relationships and applies the proposed principle of variable translation to temporal knowledge graphs.We conduct link prediction and triplet classification experiments on four benchmark datasets:WN11,WN18,FB13,and FB15K.Our model outperforms baseline models on multiple evaluation metrics according to the experimental results. 展开更多
关键词 knowledge graph knowledge graph completion variable translation temporal properties link prediction triplet classification
原文传递
Nutrition Awareness and Knowledge and Body Mass Index in Adolescents in Public Junior Secondary Schools
13
作者 Gaonyadiwe Lubinda 《Food and Nutrition Sciences》 CAS 2024年第6期432-446,共15页
Background: Non-communicable diseases are increasing among adolescents. The decision about diet is the foundation of eating habits that could persist to adulthood. Dietary decisions, which usually are hard to change l... Background: Non-communicable diseases are increasing among adolescents. The decision about diet is the foundation of eating habits that could persist to adulthood. Dietary decisions, which usually are hard to change later in life, make nutrition education at school paramount to prevent obesity and NCDs, and promote healthy eating. Objectives: To assess level of nutrition awareness and knowledge of healthy eating and food intake behaviors and association with Body Mass Index (BMI) and age. Methods: A cross sectional study that included measures such as age, gender, socioeconomic status, BMI, and nutrition knowledge was conducted in 264 respondents from 18th June 2015 to 9th July 2015. The nutrition knowledge questionnaire was composed of 24 questions divided into food nutrients, food contents, healthiest foods, and energy expenditure and nutrition benefits. CDC BMI chart for 2-20-year-olds was used to plot respondent’s weight and height. Results: The mean age of the respondents was 14.3 years (SD 0.79). Most of the respondents (153/252, 53.6%) had a low socio-economic status as categorized by the present study. The mean (SD) BMI was 20.08 (3.90). Most respondents (56.3%, 142/252) failed the knowledge test and scored below 50% and only two respondents (0.8%) had excellent nutrition knowledge. The mean percentage achieved was 46.1% (SD 15.91) ranging from 8.3% to 87.5%. There was a significant correlation between nutrition knowledge and BMI (p = 0.001). Conclusion: The study shows that adolescents do not have adequate nutrition knowledge, placing them at risk for developing non-communicable diseases later in life. Nutrition education programs are urgently needed for teachers, parents, and children. 展开更多
关键词 Adolescents NUTRITION knowledge BMI Botswana
下载PDF
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
14
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 Intelligent diagnosis knowledge graph graph attention network knowledge reasoning
下载PDF
Combining Deep Learning with Knowledge Graph for Design Knowledge Acquisition in Conceptual Product Design
15
作者 Yuexin Huang Suihuai Yu +4 位作者 Jianjie Chu Zhaojing Su Yangfan Cong Hanyu Wang Hao Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期167-200,共34页
The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep ... The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph.Specifically,the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data,and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design.Moreover,the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module,and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity in the relation extraction module.Experimental comparison verified the effectiveness and accuracy of the proposed knowledge extraction model.The case study demonstrated the feasibility of the knowledge graph construction with real fragmentary porcelain data and showed the capability to provide designers with interconnected and visualised design knowledge. 展开更多
关键词 Conceptual product design design knowledge acquisition knowledge graph entity extraction relation extraction
下载PDF
Abnormal Action Recognition with Lightweight Pose Estimation Network in Electric Power Training Scene
16
作者 Yunfeng Cai Ran Qin +3 位作者 Jin Tang Long Zhang Xiaotian Bi Qing Yang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4979-4994,共16页
Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(... Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(LPEN)to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.The LPEN network,comprising three stages—MobileNet,Initial Stage,and Refinement Stage—is employed to swiftly extract image features,detect human key points,and refine them for accurate analysis.Subsequently,a Pose-aware Action Analysis Module(PAAM)captures the positional coordinates of human skeletal points in each frame.Finally,an Abnormal Action Inference Module(AAIM)evaluates whether abnormal fall-down or unauthorized trespass behavior is occurring.For fall-down recognition,three criteria—falling speed,main angles of skeletal points,and the person’s bounding box—are considered.To identify unauthorized trespass,emphasis is placed on the position of the ankles.Extensive experiments validate the effectiveness and efficiency of the proposed system in ensuring the safety and reliability of electric power training. 展开更多
关键词 Abnormal action recognition action recognition lightweight pose estimation electric power training
下载PDF
A Survey of Knowledge Graph Construction Using Machine Learning
17
作者 Zhigang Zhao Xiong Luo +1 位作者 Maojian Chen Ling Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期225-257,共33页
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information ... Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction. 展开更多
关键词 knowledge graph(KG) semantic network relation extraction entity linking knowledge reasoning
下载PDF
Unveiling health rights:A call to action for sex workers'HIV care in the Philippines
18
作者 Sheikh Mohd Saleem Shah Sumaya Jan 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2024年第1期45-46,共2页
We are writing in response to the article titled“Addressing the needs and rights of sex workers for HIV healthcare services in the Philippines”[1].The article calls for attention on the significant challenges faced ... We are writing in response to the article titled“Addressing the needs and rights of sex workers for HIV healthcare services in the Philippines”[1].The article calls for attention on the significant challenges faced by sex workers in the Philippines in accessing HIV healthcare.We appreciate the article’s effort to examine these issues in depth.We would like to present a constant flow of thoughts in this letter while highlighting the positive aspects,potential obstacles,and additional points that contribute to this ongoing discussion. 展开更多
关键词 workers action LETTER
下载PDF
Reflective practice and knowledge development: Transforming research for a practice-based discipline
19
作者 Gwen Sherwood 《International Journal of Nursing Sciences》 CSCD 2024年第4期399-404,共6页
Knowledge development to guide evidence-informed practice is a cornerstone of nursing as a practice-based discipline.The emphasis on empirical knowledge development overshadows other ways of knowledge developmentdpers... Knowledge development to guide evidence-informed practice is a cornerstone of nursing as a practice-based discipline.The emphasis on empirical knowledge development overshadows other ways of knowledge developmentdpersonal,aesthetic,and ethical.Technical,objective knowledge development is more dominant than knowledge development for delivering holistic,personcentered care.Personal,aesthetic,and ethical ways of knowing are essential factors in satisfying work environments,patient satisfaction,and nurse retention.Boyer's model of scholarship development defining the scholarship of discovery,teaching,application,and integration guide nurses in building programs of scholarship informing the practice of nursing in practice and academia with an aim of improving and transforming healthcare delivery and patient outcomes.The purpose of this paper is to describe the various forms of scholarship described by Boyer as priorities in knowledge development,examine how the multiple ways of knowing expand traditional empirical perspectives of knowledge development,and present the value of reflective practices that undergird knowledge generation,integration,and application for holistic personcentered safe quality care.Reflective practices have a unique contribution to forming the unique art and science of nursing as a practice-based discipline. 展开更多
关键词 NURSE knowledge CORNERS
下载PDF
A novel fracture-cavity reservoir outcrop geological knowledge base construction method considering parameter collection and processing,mutual transformation of data-knowledge,application and update
20
作者 Qi-Qiang Ren Jin-Liang Gao +4 位作者 Peng Zhu Meng-Ping Li Jian-Wei Feng Qiang Jin San Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2184-2202,共19页
This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitativ... This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide. 展开更多
关键词 Geological knowledge base Karst fracture-cavity system Mutual transformation of data-knowledge knowledge base content and application Tarim basin
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部