期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Confirmation of the First Law of Thermodynamics in Theory and Extended Bernoulli Equation
1
作者 Chengshu Jin 《Journal of Applied Mathematics and Physics》 2023年第2期409-420,共12页
The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal ener... The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation. 展开更多
关键词 first law of thermodynamics Chemical thermodynamics Bernoulli Equation Static Pressure Head FRICTION
下载PDF
The Validity of the Thermohydrogravidynamic Theory Concerning the Predicted Dates of the Maximal Temporal Intensifications of the Global Seismotectonic Processes of the Earth during the Range 2020 - 2023 AD
2
作者 Sergey V. Simonenko 《Journal of Geoscience and Environment Protection》 2023年第7期242-255,共14页
We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during ... We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during the range 2020 - 2023 AD) occurred near the predicted (calculated in advance based on the global prediction thermohydrogravidynamic principles determining the maximal temporal intensifications of the global seismotectonic, volcanic, climatic and magnetic processes of the Earth) dates 2020.016666667 AD (Simonenko, 2020), 2021.1 AD (Simonenko, 2019, 2020), 2022.18333333 AD (Simonenko, 2021), 2023.26666666 AD (Simonenko, 2022) and 2020.55 AD, 2021.65 AD (Simonenko, 2019, 2021), 2022.716666666 AD (Simonenko, 2022), respectively, corresponding to the local maximal and to the local minimal, respectively, combined planetary and solar integral energy gravitational influences on the internal rigid core of the Earth. We present the short-term thermohydrogravidynamic technology (based on the generalized differential formulation of the first law of thermodynamics and the first global prediction thermohydrogravidynamic principle) for evaluation of the maximal magnitude of the strongest (during the March, 2023 AD) earthquake of the Earth occurred on March 16, 2023 AD (according to the U.S. Geological Survey). . 展开更多
关键词 Thermohydrogravidynamic Theory Non-Stationary Cosmic Gravitation Generalized first law of thermodynamics Cosmic Geology Cosmic Geophysics Cosmic Seismology Global Seismotectonic Processes Global Prediction Thermohydrogravidynamic Principles The Short-Term Thermohydrogravidynamic Technology
下载PDF
Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
3
作者 魏益焕 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期113-117,共5页
We propose a regular spherically symmetric spacetime solution with three parameters in Einstein gravity coupled to nonlinear electrodynamics(NED), which describes the NED black hole with electric charge. It is found t... We propose a regular spherically symmetric spacetime solution with three parameters in Einstein gravity coupled to nonlinear electrodynamics(NED), which describes the NED black hole with electric charge. It is found that the system enclosed by the horizon of NED spacetime satisfies the first law of thermodynamics. In order to obtain the NED spacetime with only electric charge, the case of two parameters taking the same value is considered. In this case, we express the mass of the NED spacetime as a function of the entropy and electric charge of the NED black hole, give the Smarr-like formula and the approximate Smarr formula for the mass of NED spacetime. 展开更多
关键词 regular nonlinear electrodynamics(NED) spacetime NED black hole with electric charge first law of thermodynamics Smarr formula
下载PDF
New Method Proving Clausius Inequality
4
作者 Chengshu Jin 《Journal of Modern Physics》 2020年第10期1576-1588,共13页
It is impossible that proving the internal energy change has the relations with volume and pressure. About the second law of thermodynamics, many mistakes of formulations need to be put right and modified, and many ne... It is impossible that proving the internal energy change has the relations with volume and pressure. About the second law of thermodynamics, many mistakes of formulations need to be put right and modified, and many new concepts are surveyed too. The equality and inequality on the ratios of internal energy change to temperature and work to temperature are discussed. The relation between the reversible paths and their realistic paths is also researched. In an isothermal process, the internal energy change for the gases is equal to zero, but the internal energy change is not equal to zero for the phase transition or chemical reaction. The Clausius inequality can be derived from the equation calculating the internal energy change in mathematics;it is the new method proving the Clausius inequality. These change laws of thermodynamics could be applied to the gravitational field and mechanical motion and so on. 展开更多
关键词 first law of thermodynamics Clausius Inequality Internal Energy Change Chemical Reaction Gravitational Field
下载PDF
The Confirmed Validity of the Explanatory Aspect of the Thermohydrogravidynamic Theory Concerning the Evaluated Maximal Magnitude of the Strongest Earthquake of the Earth near the Predicted Date 2021.1 AD during the Range from October 27, 2020 to May 17, 2021 AD 被引量:1
5
作者 Sergey V. Simonenko 《Journal of Geoscience and Environment Protection》 2022年第7期319-330,共12页
We present the explanation (in the frame of the established thermohydrogravidynamic technology) of the maximal magnitude M = 8.1 (according to the U.S. Geological Survey) of the strongest earthquake of the Earth occur... We present the explanation (in the frame of the established thermohydrogravidynamic technology) of the maximal magnitude M = 8.1 (according to the U.S. Geological Survey) of the strongest earthquake of the Earth occurred in Kermadec Islands, New Zealand on March 4, 2021 AD (during the considered range from October 27, 2020 to May 17, 2021 AD). This strongest earthquake occurred near the calculated date 2021.1 AD corresponding (in the frame of the thermohydrogravidynamic theory) to the local maximal combined planetary and solar integral energy gravitational influence on the internal rigid core of the Earth. To obtain this explanation, we have analyzed the strongest earthquakes of the Earth (according to the U.S. Geological Survey) occurred near the dates of the local maximal combined planetary and solar integral energy gravitational influences on the internal rigid core of the Earth. 展开更多
关键词 Thermohydrogravidynamic Theory Non-Stationary Cosmic Gravitation Gen-eralized first law of thermodynamics Cosmic Geology Cosmic Geophysics Cosmic Seismology Global Seismotectonic Processes Global Prediction Thermohydrogravidynamic Principles Thermohydrogravidynamic Technology
下载PDF
Hawking radiation and entropy of a black hole in Lovelock-Born-Infeld gravity from the quantum tunneling approach
6
作者 李固强 《Chinese Physics C》 SCIE CAS CSCD 2017年第4期124-127,共4页
The tunneling radiation of particles from black holes in Lovelock-Born-Infeld(LBI) gravity is studied by using the Parikh-Wilczek(PW) method,and the emission rate of a particle is calculated.It is shown that the emiss... The tunneling radiation of particles from black holes in Lovelock-Born-Infeld(LBI) gravity is studied by using the Parikh-Wilczek(PW) method,and the emission rate of a particle is calculated.It is shown that the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.Compared to the conventional tunneling rate related to the increment of black hole entropy,the entropy of the black hole in LBI gravity is obtained.The entropy does not obey the area law unless all the Lovelock coefficients equal zero,but it satisfies the first law of thermodynamics and is in accordance with earlier results.It is distinctly shown that the PW tunneling framework is related to the thermodynamic laws of the black hole. 展开更多
关键词 Tunneling radiation Lovelock-Born-Infeld gravity first law of thermodynamics black hole
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部