Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to i...Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to improve accuracy of SPH approximation by the lemma proved.The lemma describes the relationship of functions and their SPH approximation.Finally,the error comparison of SPH method with or without our improvement was carried out.展开更多
In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit...In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.展开更多
In this article,the refined Schwarz-Pick estimates for positive real part holomorphic functions p(x)=p(0)+Σ_(m=k)^(∞)D^(M)p(0)(x^(m))/m!:G→Care given,where k is a positive integer,and G is a balanced domain in comp...In this article,the refined Schwarz-Pick estimates for positive real part holomorphic functions p(x)=p(0)+Σ_(m=k)^(∞)D^(M)p(0)(x^(m))/m!:G→Care given,where k is a positive integer,and G is a balanced domain in complex Banach spaces.In particular,the results of first order Fréchet derivative for the above functions and higher order Frechet derivatives for positive real part holomorphic functions p(x)=p(0)+Σ_(s=1)^(∞)D^(sk)p(0)(x^(sk))/(sk)!:G→Care sharp for G=B,where B is the unit ball of complex Banach spaces or the unit ball of complex Hilbert spaces.Their results reduce to the classical result in one complex variable,and generalize some known results in several complex variables.展开更多
基金The National Natural Science Foundation of China(No.50778111)The Key Project of Fund of Science and Technology Development of Shanghai(No.07JC14023)
文摘Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to improve accuracy of SPH approximation by the lemma proved.The lemma describes the relationship of functions and their SPH approximation.Finally,the error comparison of SPH method with or without our improvement was carried out.
基金supported by the NSFC(11871257,12071130)supported by the NSFC(11971165)。
文摘In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.
基金supported by the National Natural Science Foundation of China(Nos.11871257,12071130)。
文摘In this article,the refined Schwarz-Pick estimates for positive real part holomorphic functions p(x)=p(0)+Σ_(m=k)^(∞)D^(M)p(0)(x^(m))/m!:G→Care given,where k is a positive integer,and G is a balanced domain in complex Banach spaces.In particular,the results of first order Fréchet derivative for the above functions and higher order Frechet derivatives for positive real part holomorphic functions p(x)=p(0)+Σ_(s=1)^(∞)D^(sk)p(0)(x^(sk))/(sk)!:G→Care sharp for G=B,where B is the unit ball of complex Banach spaces or the unit ball of complex Hilbert spaces.Their results reduce to the classical result in one complex variable,and generalize some known results in several complex variables.