Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
The finite element method has established itself as an efficient numerical procedure for the solution of arbitrary-shaped field problems in space. Basically, the finite element method transforms the underlying differe...The finite element method has established itself as an efficient numerical procedure for the solution of arbitrary-shaped field problems in space. Basically, the finite element method transforms the underlying differential equation into a system of algebraic equations by application of the method of weighted residuals in conjunction with a finite element ansatz. However, this procedure is restricted to even-ordered differential equations and leads to symmetric system matrices as a key property of the finite element method. This paper aims in a generalization of the finite element method towards the solution of first-order differential equations. This is achieved by an approach which replaces the first-order derivative by fractional powers of operators making use of the square root of a Sturm-Liouville operator. The resulting procedure incorporates a finite element formulation and leads to a symmetric but dense system matrix. Finally, the scheme is applied to the barometric equation where the results are compared with the analytical solution and other numerical approaches. It turns out that the resulting numerical scheme shows excellent convergence properties.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive...A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.展开更多
In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equat...In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.展开更多
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been...Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the...This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.展开更多
Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related li...Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.展开更多
By using some differential inequality, a second-order delay differential equation(r(t)x′(t))′ + p(t)x(q(t)) = 0has been investigated and some necessary condition for this equation has a nonoscillatorysolution and so...By using some differential inequality, a second-order delay differential equation(r(t)x′(t))′ + p(t)x(q(t)) = 0has been investigated and some necessary condition for this equation has a nonoscillatorysolution and some sufficient condition which ensures that all of the solutions of the aboveequation are oscillatory are obtained.展开更多
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind sch...Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio...This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asympto...The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asymptotic stability condition. In this paper the convergence of this method under the asymptotic stability and other conditions in theorem 3 is proved.展开更多
In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the eq...In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.展开更多
The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of a...The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.展开更多
In this paper,we aim to derive an averaging principle for stochastic differential equations driven by time-changed Lévy noise with variable delays.Under certain assumptions,we show that the solutions of stochasti...In this paper,we aim to derive an averaging principle for stochastic differential equations driven by time-changed Lévy noise with variable delays.Under certain assumptions,we show that the solutions of stochastic differential equations with time-changed Lévy noise can be approximated by solutions of the associated averaged stochastic differential equations in mean square convergence and in convergence in probability,respectively.The convergence order is also estimated in terms of noise intensity.Finally,an example with numerical simulation is given to illustrate the theoretical result.展开更多
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
文摘The finite element method has established itself as an efficient numerical procedure for the solution of arbitrary-shaped field problems in space. Basically, the finite element method transforms the underlying differential equation into a system of algebraic equations by application of the method of weighted residuals in conjunction with a finite element ansatz. However, this procedure is restricted to even-ordered differential equations and leads to symmetric system matrices as a key property of the finite element method. This paper aims in a generalization of the finite element method towards the solution of first-order differential equations. This is achieved by an approach which replaces the first-order derivative by fractional powers of operators making use of the square root of a Sturm-Liouville operator. The resulting procedure incorporates a finite element formulation and leads to a symmetric but dense system matrix. Finally, the scheme is applied to the barometric equation where the results are compared with the analytical solution and other numerical approaches. It turns out that the resulting numerical scheme shows excellent convergence properties.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
文摘A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.
文摘In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.
基金Supported by the National Natural Science Foundation of China(71571001)
文摘Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.
基金supported by the National Natural Science Foundation of China(12171050,12071047)the Fundamental Research Funds for the Central Universities(500421126)。
文摘Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.
基金Supported by the National Natural Science Foundation of China(10061004) Supported by the Natural Sciences Foundation of Yunnan province(2003A0001M)
文摘By using some differential inequality, a second-order delay differential equation(r(t)x′(t))′ + p(t)x(q(t)) = 0has been investigated and some necessary condition for this equation has a nonoscillatorysolution and some sufficient condition which ensures that all of the solutions of the aboveequation are oscillatory are obtained.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
基金supported by the Department of Science & Technology, Government of India under research grant SR/S4/MS:318/06.
文摘Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
基金Supported by the Natural Science Foundation of Guangdong Province(032469)
文摘By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
文摘The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asymptotic stability condition. In this paper the convergence of this method under the asymptotic stability and other conditions in theorem 3 is proved.
文摘In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.
基金the National Natural Science Foundation of China (10532050)
文摘The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.
基金supported by the National NaturalScience Foundation of China(12071003,11901005)the Natural Science Foundation of Anhui Province(2008085QA20)。
文摘In this paper,we aim to derive an averaging principle for stochastic differential equations driven by time-changed Lévy noise with variable delays.Under certain assumptions,we show that the solutions of stochastic differential equations with time-changed Lévy noise can be approximated by solutions of the associated averaged stochastic differential equations in mean square convergence and in convergence in probability,respectively.The convergence order is also estimated in terms of noise intensity.Finally,an example with numerical simulation is given to illustrate the theoretical result.