A synthetic biological pond composed of aquatic plants, a microorganism and aquatic animals was applied in the purification of the wastewater discharged from a Tnonyx sinensis breeding greenhouse, and the removal effe...A synthetic biological pond composed of aquatic plants, a microorganism and aquatic animals was applied in the purification of the wastewater discharged from a Tnonyx sinensis breeding greenhouse, and the removal effects of TN, NH4+ -N, TP and COD in the wastewater were analyzed. The results show that after the breeding wastewater was purified by the synthetic biological pond for about five months, TN, NH~ -N, TP and COD concentration in the breeding wastewater were reduced by 78%, 92%, 81% and 60% respectively, while DO content in the breeding wastewater increased by about four times, and there was no obvious change in water pH; previous yellow or brown and turbid sewage became yel- lowish and slightly turbid, and it had no smell. It is obviously seen that the purification effect of T. sinensis breeding wastewater by the synthetic biological pond composed of aquatic plants, a microorganism and aquatic animals is obvious, and the synthetic biological pond has good promotion and application prospects.展开更多
This paper describes the removal of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor. The strategy of simultaneous feeding and draining was explored.The results show that introduction of...This paper describes the removal of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor. The strategy of simultaneous feeding and draining was explored.The results show that introduction of a new batch of wastewater and withdrawal of the purified water can be conducted simultaneously with the maximum volumetric exchange rate of about 70%.Application of this feeding and draining mode leads to the reduction of the cycle time, the increase of the utilization of the reactor volume and the simplification of the reactor structure. The treatment of a synthetic wastewater containing COD and nitrogen was investigated. The operation mode of F(D) O ( i.e ., simultaneous feeding and draining followed by the aerobic condition) was adopted. It was found that COD was degraded very fast in the initial reaction period of time, then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively, while the nitrite nitrogen level increased first and then reduced. The relationship between the COD or ammonia nitrogen loading and its removal rate was examined, and the removal of COD, ammonia nitrogen and total nitrogen could exceed 95%, 90% and 80% respectively. The fact that nitrogen could be removed more completely under constant aeration (aerobic condition) of the SBBR operation mode is very interesting and could be explained in several respects.展开更多
Dyes are common pollutants in textile wastewaters, and the treatment of the wastewater has now attracted much attention due to its wide application and low biodegradability. In this study, Fe^0/C/Clay ceramics, a kind...Dyes are common pollutants in textile wastewaters, and the treatment of the wastewater has now attracted much attention due to its wide application and low biodegradability. In this study, Fe^0/C/Clay ceramics, a kind of novel micro-electrolysis filler, were sintered and employed in a dynamic micro-electrolysis reactor for synthetic Acid Red 73 (AR73) and Reactive Blue 4 (RB4) wastewater treatment. The effects ofinfluent pH, hydraulic retention time (HRT), and aeration on the decoloration efficiencies of AR73 and RB4 were studied. The optimum conditions for wastewater treatment were: AR73, influent pH of 4, HRT of 2 h and aeration; RB4, influent pH of 5, HRT of 6 h and aeration. Under the optimum conditions, decoloration efficiency of AR73 and RB4 wastewater was 96% and 83%, respectively. Results of UV-vis spectrum scanning demonstrated that the chromophores were broken. Continuous running tests showed that improvement of micro-electrolysis system with Fe^0/C/Clay ceramics for AR73 and RB4 synthetic wastewater treatment could avoid failure of micro-electrolysis reactor, which indicated great potential for the practical application of the ceramics in the field of actual industrial wastewater treatment.展开更多
Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carri...Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carried out in dedicated micro-reactors and pilot plants, whose designs are critical to the performance selection. Variation in catalyst composition and defining the gas to oil feed ratios with the operating temperature are a few of the parameters studied. Product selection and maximizing diesel yield combined with stability (catalyst life) were the ultimate drivers. The selected catalyst was then tested under commercial conditions in a dedicated 300 barrel per day demonstration plant. The products were also tested in engines to assess their combustion characteristics.展开更多
基金Supported by the Project of Public Welfare Application Research from Huzhou Science and Technology Bureau(2013C102070)
文摘A synthetic biological pond composed of aquatic plants, a microorganism and aquatic animals was applied in the purification of the wastewater discharged from a Tnonyx sinensis breeding greenhouse, and the removal effects of TN, NH4+ -N, TP and COD in the wastewater were analyzed. The results show that after the breeding wastewater was purified by the synthetic biological pond for about five months, TN, NH~ -N, TP and COD concentration in the breeding wastewater were reduced by 78%, 92%, 81% and 60% respectively, while DO content in the breeding wastewater increased by about four times, and there was no obvious change in water pH; previous yellow or brown and turbid sewage became yel- lowish and slightly turbid, and it had no smell. It is obviously seen that the purification effect of T. sinensis breeding wastewater by the synthetic biological pond composed of aquatic plants, a microorganism and aquatic animals is obvious, and the synthetic biological pond has good promotion and application prospects.
文摘This paper describes the removal of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor. The strategy of simultaneous feeding and draining was explored.The results show that introduction of a new batch of wastewater and withdrawal of the purified water can be conducted simultaneously with the maximum volumetric exchange rate of about 70%.Application of this feeding and draining mode leads to the reduction of the cycle time, the increase of the utilization of the reactor volume and the simplification of the reactor structure. The treatment of a synthetic wastewater containing COD and nitrogen was investigated. The operation mode of F(D) O ( i.e ., simultaneous feeding and draining followed by the aerobic condition) was adopted. It was found that COD was degraded very fast in the initial reaction period of time, then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively, while the nitrite nitrogen level increased first and then reduced. The relationship between the COD or ammonia nitrogen loading and its removal rate was examined, and the removal of COD, ammonia nitrogen and total nitrogen could exceed 95%, 90% and 80% respectively. The fact that nitrogen could be removed more completely under constant aeration (aerobic condition) of the SBBR operation mode is very interesting and could be explained in several respects.
文摘Dyes are common pollutants in textile wastewaters, and the treatment of the wastewater has now attracted much attention due to its wide application and low biodegradability. In this study, Fe^0/C/Clay ceramics, a kind of novel micro-electrolysis filler, were sintered and employed in a dynamic micro-electrolysis reactor for synthetic Acid Red 73 (AR73) and Reactive Blue 4 (RB4) wastewater treatment. The effects ofinfluent pH, hydraulic retention time (HRT), and aeration on the decoloration efficiencies of AR73 and RB4 were studied. The optimum conditions for wastewater treatment were: AR73, influent pH of 4, HRT of 2 h and aeration; RB4, influent pH of 5, HRT of 6 h and aeration. Under the optimum conditions, decoloration efficiency of AR73 and RB4 wastewater was 96% and 83%, respectively. Results of UV-vis spectrum scanning demonstrated that the chromophores were broken. Continuous running tests showed that improvement of micro-electrolysis system with Fe^0/C/Clay ceramics for AR73 and RB4 synthetic wastewater treatment could avoid failure of micro-electrolysis reactor, which indicated great potential for the practical application of the ceramics in the field of actual industrial wastewater treatment.
文摘Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carried out in dedicated micro-reactors and pilot plants, whose designs are critical to the performance selection. Variation in catalyst composition and defining the gas to oil feed ratios with the operating temperature are a few of the parameters studied. Product selection and maximizing diesel yield combined with stability (catalyst life) were the ultimate drivers. The selected catalyst was then tested under commercial conditions in a dedicated 300 barrel per day demonstration plant. The products were also tested in engines to assess their combustion characteristics.