To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent flu...To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent fluidized bed (TFB) FCC unit. The experimental results in the riser indicated that under the condition of low reaction temperature and regenerated catalyst temperature, large catalyst-to-oil weight ratio (C/O) and long reaction time, the gasoline olefin content could be reduced to 20.28 wt%, but there is large octane number loss owing to a great loss in high octane number olefin. Therefore, a novel FCC process using the TFB reactor was proposed to strengthen the aromatization reaction. The reaction performance of TFB reactor were investigated. The result demonstrated that the TFB reactor has more significant effect in reducing olefins and improving aromatics. At the expense of certain gasoline yield, the gasoline olefin content reduced to 23.70 wt%, aromatics content could increase to 26.79 wt% and the RON was up to 91.0. The comparison of reactor structure and fluidization demonstrated that the TFB reactor has higher catalyst bed density. The reaction heat and coke combustion heat was calculated indicating the feasibility of its industrial application of the TFB process.展开更多
Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carri...Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carried out in dedicated micro-reactors and pilot plants, whose designs are critical to the performance selection. Variation in catalyst composition and defining the gas to oil feed ratios with the operating temperature are a few of the parameters studied. Product selection and maximizing diesel yield combined with stability (catalyst life) were the ultimate drivers. The selected catalyst was then tested under commercial conditions in a dedicated 300 barrel per day demonstration plant. The products were also tested in engines to assess their combustion characteristics.展开更多
Fischer-Tropsch synthesis(FTS)wax is a mixture of linear hydrocarbons with carbon number from C7 to C70+.Converting FTS wax into high-quality diesel(no sulfur and nitrogen contents)by hydrocracking technology is attra...Fischer-Tropsch synthesis(FTS)wax is a mixture of linear hydrocarbons with carbon number from C7 to C70+.Converting FTS wax into high-quality diesel(no sulfur and nitrogen contents)by hydrocracking technology is attractive in economy and practicability.Kinetic study of the hydrocracking of FTS wax in elementary step level is very challenging because of the huge amounts of reactions and species involved.Generation of reaction networks for hydrocracking of FTS wax in which the chain length goes up to C70 is described on the basis of Boolean adjacency matrixes.Each of the species(including paraffins,olefins and carbenium ions)involved in the elementary steps is represented digitally by using a(N+3)N matrix,in which a group of standardized numbering rules are designed to guarantee the unique identity of the species.Subsequently,the elementary steps are expressed by computer-aided matrix transformations in terms of proposed reaction rules.Dynamic memory allocation is used in species storage and a characteristic vector with nine elements is designed to store the key information of a(N+3)N matrix,which obviously reduces computer memory consumption and improves computing efficiency.The detailed reaction networks of FTS wax hydrocracking can be generated smoothly and accurately by the current method.The work is the basis of advanced elementary-step-level kinetic modeling.展开更多
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ...Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.展开更多
Drought-resistant plants exhibit strong water retention capability.In this regard,the autotetraploid sour jujube leaves exhibit better water retention than diploid leaves.Morphological comparisons and physiological co...Drought-resistant plants exhibit strong water retention capability.In this regard,the autotetraploid sour jujube leaves exhibit better water retention than diploid leaves.Morphological comparisons and physiological comparisons of diploid and autotetraploid leaves showed that the autotetraploid leaves had thicker leaf cuticles and more leaf wax accumulation than the diploid leaves,which could reduce cuticle permeability and improve the drought tolerance of leaves.In this study,the cuticular wax crystalloids on the adaxial and abaxial sides of young and mature jujube leaves were observed in the two ploidy types,and unique cuticular wax crystalloids covering a large area of the cuticle on autotetraploid sour jujube leaves may provide an advantage in reducing leaf non-stomata transpiration and improving plant drought tolerance.Based on the transcriptome,115 differentially expressed genes between diploids and autotetraploids were further analyzed and found to be involved in the accumulation of cuticular wax components,including terpenoids,fatty acids,and lipids,as well as ABC transporter and wax biosynthetic process.Finally,14 genes differentially expressed between glossy autotetraploid leaves and nonglossy diploid leaves,such as LOC107414787,LOC107411574 and LOC107413721,were screened as candidate genes by qRT-PCR analysis.This findings provided insights into how polyploidization improved drought tolerance.展开更多
Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition lay...Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.展开更多
The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoro...The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoroughly explored.In this study,we characterized a new maize mutant,ragged leaf4(rgd4),which exhibits crinkled and ragged leaves starting from the sixth leaf stage.The phenotype of rgd4 is conferred by ZmCER1,which encoding an aldehyde decarbonylase involved in wax biosynthesis.ZmCER1 function deficient mutant displayed reduced cuticular wax density and disordered bulliform cells(BCs),while ZmCER1 overexpressing plants exhibited the opposite effects,indicating that ZmCER1 regulates cuticular wax biosynthesis and BCs development.Additionally,as the density of cuticular wax increased,the water loss rate of detached leaf decreases,suggesting that ZmCER1 is positively correlated with plant drought tolerance.展开更多
The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A se...The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.展开更多
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi...A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.展开更多
This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is...This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is little difference in wax precipitation exothermic characteristics of crude oils at different T_(pre),as well as the wax crystal solubility coefficient in the temperature range of 25-30℃.For the undoped crude oil,the flowability after wax precipitation gets much improved and the wax deposition is alleviated as T_(pre)increasing.At T_(pre)=50℃,the viscosity and wax deposition rate of crude oil adding wax inhibitors are higher than those of the undoped crude oil.When the T_(pre)increases to 60,70,and 80℃,the flowability of the doped crude oil are largely improved and the wax deposition is suppressed with the T_(pre)increase,but the wax content of wax deposit increases gradually.It is speculated that,on the one hand,the T_(pre)increase helps the dispersion of asphaltenes into smaller sizes,which facilitates the co-crystallization with paraffin waxes and generates more aggregated wax crystal flocs.This weakens the low-temperature gel structure and increases the solid concentration required for the crosslink to form the wax deposit.On the other hand,the decrease in viscosity increases the diffusion rate of wax molecules and accelerates the aging of wax deposits.The experimental results have important guiding significance for the pipeline transportation of doped crude oils.展开更多
Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyroly...Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyrolysis is deemed the most economical option. Currently, the wax obtained from the pyrolysis of waste plastics is mainly used as a feedstock to manufacture chemicals and fuels or added to asphalt for pavement construction, with no other applications of wax being reported. Herein, the thermal pyrolysis of three common waste polyolefin plastics: high-density polyethylene(HDPE), low-density polyethylene(LDPE), and polypropylene(PP), was conducted at 450 ℃. The waste plastics-derived waxes were characterized and studied for a potential new application: phase change materials(PCMs) for thermal energy storage(TES). Gas chromatography–mass spectrometry analysis showed that paraffin makes up most of the composition of HDPE and LDPE waxes, whereas PP wax contains a mixture of naphthene, isoparaffin, olefin, and paraffin. Diff erential scanning calorimetry(DSC) analysis indicated that HDPE and LDPE waxes have a peak melting temperature of 33.8 ℃ and 40.3 ℃, with a relatively high latent heat of 103.2 J/g and 88.3 J/g, respectively, whereas the PP wax was found to have almost negligible latent heat. Fourier transform infrared spectroscopy and DSC results revealed good chemical and thermal stability of HDPE and LDPE waxes after 100 cycles of thermal cycling. Performance evaluation of the waxes was also conducted using a thermal storage pad to understand their thermoregulation characteristics for TES applications.展开更多
In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embed...In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.Here,we developed an optimized protocol to simplify the process and improve RNA sensitivity.We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution,as in the whole-mount ISH method in the optimized protocol.Using the optimized protocol,we examined the expression patterns of the CLAVATA3(CLV3)and WUSCHEL(WUS)genes in shoot apical meristems and floral meristems of Cucumis sativus(cucumber)and Arabidopsis thaliana(Arabidopsis).The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.Moreover,the optimized protocol achieved high signal sensitivity.The optimized protocol was successful for both cucumber and Arabidopsis,which indicates it might have general applicability to most plants.展开更多
Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu...Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.展开更多
Drought and heat stresses cause yield losses in alfalfa,a forage crop cultivated worldwide.Improving its drought and heat tolerance is desirable for maintaining alfalfa productivity in hot,arid regions.Cuticular wax f...Drought and heat stresses cause yield losses in alfalfa,a forage crop cultivated worldwide.Improving its drought and heat tolerance is desirable for maintaining alfalfa productivity in hot,arid regions.Cuticular wax forms a protective barrier on aerial surfaces of land plants against environmental stresses.ABCG11encodes an ATP binding cassette(ABC) transporter that functions in the cuticular wax transport pathway.In this study,Zx ABCG11 from the xerophyte Zygophyllum xanthoxylum was introduced into alfalfa by Agrobacterium tumefaciens-mediated transformation.Compared to the wild type(WT),transgenic alfalfa displayed faster growth,higher wax crystal density,and thicker cuticle on leaves under normal condition.Under either drought or heat treatment in greenhouse conditions,the plant height and shoot biomass of transgenic lines were significantly higher than those of the WT.Transgenic alfalfa showed excellent growth and 50% greater hay yield than WT under field conditions in a hot,arid region.Overexpression of Zx ABCG11 up-regulated wax-related genes and resulted in more cuticular wax deposition,which contributed to reduction of cuticle permeability and thus increased water retention and photosynthesis capacity of transgenic alfalfa.Thus,overexpression of Zx ABCG11 can simultaneously improve biomass yield,drought and heat tolerance in alfalfa by increasing cuticular wax deposition.Our study provides a promising avenue for developing novel forage cultivars suitable for planting in hot,arid,marginal lands.展开更多
Cuticular wax plays a major role in the growth and storage of plant fruits.The cuticular wax coating,which covers the outermost layer of a fruit’s epidermal cells,is insoluble in water.Cuticular wax is mainly compose...Cuticular wax plays a major role in the growth and storage of plant fruits.The cuticular wax coating,which covers the outermost layer of a fruit’s epidermal cells,is insoluble in water.Cuticular wax is mainly composed of very long-chain fatty acids(VLCFAs);their derivatives,including esters,primary alcohols,secondary alcohols,aldehydes,and ketones;and triterpenoids.This complex mixture of lipids is probably biosynthesized in the epidermal cells of most plants and exuded onto the surface.Cuticular wax not only makes the fruit less susceptible to microbial infection but also reduces mechanical damage to the fruit,thereby maintaining the fruit’s commodity value.To date,research has mostly focused on the changes,function,and regulation of fruit wax before harvest,while ignoring the changes and functions of wax in fruit storage.This paper reviews on the composition,structure,and metabolic regulation of cuticular wax in fruits.It also focuses on postharvest factors affecting wax composition,such as storage temperature,relative humidity(RH),gas atmosphere,and as exogenous hormones;and the effects of wax on fruit postharvest quality,including water dispersion,fruit softening,physiological disorders,and disease resistance.These summaries may be of assistance in better understanding the changes in cuticular wax in postharvest fruit and the resulting effects on fruit quality.展开更多
Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS). Problems associated with shaping of Co/CNTs into ...Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS). Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications. In this investigation regular γ- and nano-structured (N-S) alumina as well as CNTs-covered regular γ- and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru. The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS. γ-Al2O3 was prepared by calcination of bohemite and N-S-Al2O3 was prepared by sol-gel method using aluminum chloride as starting material. Catalyst evaluations indicated that N-S-Al2O3 was superior to regular γ-Al2O3 and that CNTs-covered alumina supports were favored over non-covered ones in terms of activity and heavy hydrocarbon selectivity. These were justified by porosimetric characteristics of the catalysts and existence of CNTs points of view. CNTs-covered catalysts also showed higher wax selectivity and better resistance to deactivation. Furthermore, TPR analysis indicated that the cobalt aluminate phase, which is responsible for the permanent deactivation of alumina supported Co-based catalysts, did not form on alumina supported Co-based catalysts covered with CNTs due to weaker interactions between cobalt and alumina.展开更多
The Fischer-Tropsch synthesis is a significant technology for converting coal,natural gas,and biomass into synthetic fuels.In recent years,the use of microchannel reactors for the Fischer-Tropsch synthesis has attract...The Fischer-Tropsch synthesis is a significant technology for converting coal,natural gas,and biomass into synthetic fuels.In recent years,the use of microchannel reactors for the Fischer-Tropsch synthesis has attracted significant attention.Fischer-Tropsch synthesis experiments were carried out in a microchannel reactor and the influences of reaction conditions on the experimental results were investigated in this study.Based on the experimental data,a dynamic multi-component pseudo-homogeneous variable-volume flow model of microchannel reactors for the Fischer-Tropsch synthesis was built to determine the pressure-,velocity-,conversion-and(component-wise)concentration-distributions in reaction channels.The model takes into account the combined effects of gas volume expansion caused by the frictional pressure drop and gas volume contraction caused by reaction consumption.A novel effective method for calculating the pressure and superficial gas velocity values in microchannel reactors was proposed in the model.Besides that,two sets of experimental data were selected from references to evaluate the validity and accuracy of the model.The reaction performances in the microchannels were analyzed carefully based on the calculated results.展开更多
Wax deposition in oil-water stratified flow is commonly encountered onshore and offshore oil production pipe systems,and typically reduces transportation capacity of oil.The accurate predicted model of wax deposition ...Wax deposition in oil-water stratified flow is commonly encountered onshore and offshore oil production pipe systems,and typically reduces transportation capacity of oil.The accurate predicted model of wax deposition has becomes an indispensable approach to design effective remediation strategies.However,a reliable mechanistic model for wax deposition prediction in oil-water two-phase stratified pipe flow is lacking to validate the deposition process.In this work,a three-dimensional(axial,radial,and angular)robust wax deposit model for oil-water stratified circular pipe flow was developed.The model of formation of a gel deposit based on the first principles of rheology was developed,associated with the results obtained from hydrodynamics and heat/mass transfer simulations.The predictions for wax deposition are found to compare satisfactorily with experimental data with two different oils for single phase and four different water cuts for oil-water stratified pipe flow.It can be seen from the wax gelation mechanism that an increase in water cut can help to reduce the wall/oil-deposit interface shear stress,thereby leading to an increase in the degree of gelation as well as the deposit rate.Furthermore,a local deposit analysis in the circumferential direction was conducted,for water cut 75%and total flow rate 5 m3/h,which provided insights to understand that the thickness on pipe wall was roughly uniformly distributed locates near the top of the pipe and the nearer the position gets close to two points,where the oil-water interface contacts the inner wall,the deposition thickness quickly dropped to 0.It was attributed to the fact that a roughly uniformly thickness far away from the oil-water interface contact the inner wall resulted in the slowly changes temperature along the circumferential pipe wall wetted by oil.展开更多
The coupled formation of wax crystals and hydrates is a critical issue for the safety of deep-sea oil and gas exploration and subsea transport pipeline flow.Therefore,this paper conducts an experimental study on the c...The coupled formation of wax crystals and hydrates is a critical issue for the safety of deep-sea oil and gas exploration and subsea transport pipeline flow.Therefore,this paper conducts an experimental study on the characteristics of methane hydrate formation in a water-in-oil(W/O)system with different wax crystal contents and explores the influence of different initial experimental pressures on the induction period and maximum rate of hydrate formation.The wavelet function was introduced to process the reaction rate and calculate the maximum speed of hydrate formation.Notably,the higher the pressure,the smaller the maximum rate of hydrate formation.We observed that wax crystal precipitation increases the viscosity of the emulsion,which limits the diffusion of gas in the liquid phase during hydrate nucleation and thus delays the hydrate nucleation.The methane gas precipitation also affects the remaining fraction’s wax content and therefore affects the wax precipitation.Secondary hydrate formation was observed several times during the experiment,increasing the risk of pipeline blockage.Overall,this work provides insights into the effect of wax crystal precipitation on hydrate behaviour that could facilitate flow assurance applications in subsea multiphase pipelines and inform the safe transportation of oil and gas pipelines.展开更多
Objective: To investigate the effect of wax therapy in pain care of patients with rheumatoid arthritis. Methods: Convenience sampling method was used to select inpatients with rheumatoid arthritis admitted to the rheu...Objective: To investigate the effect of wax therapy in pain care of patients with rheumatoid arthritis. Methods: Convenience sampling method was used to select inpatients with rheumatoid arthritis admitted to the rheumatology and immunology department of a 3A hospital in Jingzhou City. 75 patients from January 2021 to June 2021 were selected as the control group, and 75 patients from January 2022 to June 2022 were selected as the observation group. The control group was given routine nursing, and the observation group was implemented wax therapy nursing on the basis of the control group. The relief of clinical symptoms (morning stiffness time, pain score) and quality of life score of the two groups were observed. Results: After intervention, there was statistical significance between the two groups (P Conclusion: Wax therapy can improve the time of morning stiffness, the degree of pain and the quality of life of patients with rheumatoid arthritis.展开更多
基金supported by the National Key Research and Development Program of China(2017YFB0602504)the General Program of National Natural Science Foundation of China(22178385).
文摘To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent fluidized bed (TFB) FCC unit. The experimental results in the riser indicated that under the condition of low reaction temperature and regenerated catalyst temperature, large catalyst-to-oil weight ratio (C/O) and long reaction time, the gasoline olefin content could be reduced to 20.28 wt%, but there is large octane number loss owing to a great loss in high octane number olefin. Therefore, a novel FCC process using the TFB reactor was proposed to strengthen the aromatization reaction. The reaction performance of TFB reactor were investigated. The result demonstrated that the TFB reactor has more significant effect in reducing olefins and improving aromatics. At the expense of certain gasoline yield, the gasoline olefin content reduced to 23.70 wt%, aromatics content could increase to 26.79 wt% and the RON was up to 91.0. The comparison of reactor structure and fluidization demonstrated that the TFB reactor has higher catalyst bed density. The reaction heat and coke combustion heat was calculated indicating the feasibility of its industrial application of the TFB process.
文摘Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carried out in dedicated micro-reactors and pilot plants, whose designs are critical to the performance selection. Variation in catalyst composition and defining the gas to oil feed ratios with the operating temperature are a few of the parameters studied. Product selection and maximizing diesel yield combined with stability (catalyst life) were the ultimate drivers. The selected catalyst was then tested under commercial conditions in a dedicated 300 barrel per day demonstration plant. The products were also tested in engines to assess their combustion characteristics.
基金supported by the National Key Research&Development Program of China(2020YFB0606404)National Natural Science Foundation of China(21908234)。
文摘Fischer-Tropsch synthesis(FTS)wax is a mixture of linear hydrocarbons with carbon number from C7 to C70+.Converting FTS wax into high-quality diesel(no sulfur and nitrogen contents)by hydrocracking technology is attractive in economy and practicability.Kinetic study of the hydrocracking of FTS wax in elementary step level is very challenging because of the huge amounts of reactions and species involved.Generation of reaction networks for hydrocracking of FTS wax in which the chain length goes up to C70 is described on the basis of Boolean adjacency matrixes.Each of the species(including paraffins,olefins and carbenium ions)involved in the elementary steps is represented digitally by using a(N+3)N matrix,in which a group of standardized numbering rules are designed to guarantee the unique identity of the species.Subsequently,the elementary steps are expressed by computer-aided matrix transformations in terms of proposed reaction rules.Dynamic memory allocation is used in species storage and a characteristic vector with nine elements is designed to store the key information of a(N+3)N matrix,which obviously reduces computer memory consumption and improves computing efficiency.The detailed reaction networks of FTS wax hydrocracking can be generated smoothly and accurately by the current method.The work is the basis of advanced elementary-step-level kinetic modeling.
基金the financial support from by the National Key Research and Development Program of China(No.2022YFB4101800)National Natural Science Foundation of China(No.22278298)Program for Introducing Talents of Discipline to Universities of China(No.BP0618007).
文摘Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.
基金supported by grants from the Fundamental Research Funds for the Central Universities(Grant No.2021JD02)the National Key Research and Development Program of China(Grant No.2018YFD1000607)。
文摘Drought-resistant plants exhibit strong water retention capability.In this regard,the autotetraploid sour jujube leaves exhibit better water retention than diploid leaves.Morphological comparisons and physiological comparisons of diploid and autotetraploid leaves showed that the autotetraploid leaves had thicker leaf cuticles and more leaf wax accumulation than the diploid leaves,which could reduce cuticle permeability and improve the drought tolerance of leaves.In this study,the cuticular wax crystalloids on the adaxial and abaxial sides of young and mature jujube leaves were observed in the two ploidy types,and unique cuticular wax crystalloids covering a large area of the cuticle on autotetraploid sour jujube leaves may provide an advantage in reducing leaf non-stomata transpiration and improving plant drought tolerance.Based on the transcriptome,115 differentially expressed genes between diploids and autotetraploids were further analyzed and found to be involved in the accumulation of cuticular wax components,including terpenoids,fatty acids,and lipids,as well as ABC transporter and wax biosynthetic process.Finally,14 genes differentially expressed between glossy autotetraploid leaves and nonglossy diploid leaves,such as LOC107414787,LOC107411574 and LOC107413721,were screened as candidate genes by qRT-PCR analysis.This findings provided insights into how polyploidization improved drought tolerance.
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+2 种基金CNPC Innovation Found(Grant No.2022DQ02-0501),Changzhou Applied Basic Research Program(Grant No.CJ20230030)The major project of universities affiliated with Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project。
文摘Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.
基金supported by Professor Zhukuan Cheng from Institute of Genetics and Developmental Biology,Chinese Academy of Sciencessupported by the Funds of Key R&D Program of Shandong Province(2022LZGC006)Key R&D Program of Shandong Province(2023LZGC006)。
文摘The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoroughly explored.In this study,we characterized a new maize mutant,ragged leaf4(rgd4),which exhibits crinkled and ragged leaves starting from the sixth leaf stage.The phenotype of rgd4 is conferred by ZmCER1,which encoding an aldehyde decarbonylase involved in wax biosynthesis.ZmCER1 function deficient mutant displayed reduced cuticular wax density and disordered bulliform cells(BCs),while ZmCER1 overexpressing plants exhibited the opposite effects,indicating that ZmCER1 regulates cuticular wax biosynthesis and BCs development.Additionally,as the density of cuticular wax increased,the water loss rate of detached leaf decreases,suggesting that ZmCER1 is positively correlated with plant drought tolerance.
基金supported by the National Natural Science Foundation of China(21908234)the National Key Research&Development Program of China(2020YFB0606404)+1 种基金the Inner Mongolia Science and Technology Agency Program(2019CG058)Shanxi Province Natural Science Foundation(202103021223063).
文摘The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.
文摘A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.
基金The authors thank the financial support from the National Natural Science Foundation of China(51904327,U19B2012)China University of Petroleum Innovation Project(22CX06050A).
文摘This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is little difference in wax precipitation exothermic characteristics of crude oils at different T_(pre),as well as the wax crystal solubility coefficient in the temperature range of 25-30℃.For the undoped crude oil,the flowability after wax precipitation gets much improved and the wax deposition is alleviated as T_(pre)increasing.At T_(pre)=50℃,the viscosity and wax deposition rate of crude oil adding wax inhibitors are higher than those of the undoped crude oil.When the T_(pre)increases to 60,70,and 80℃,the flowability of the doped crude oil are largely improved and the wax deposition is suppressed with the T_(pre)increase,but the wax content of wax deposit increases gradually.It is speculated that,on the one hand,the T_(pre)increase helps the dispersion of asphaltenes into smaller sizes,which facilitates the co-crystallization with paraffin waxes and generates more aggregated wax crystal flocs.This weakens the low-temperature gel structure and increases the solid concentration required for the crosslink to form the wax deposit.On the other hand,the decrease in viscosity increases the diffusion rate of wax molecules and accelerates the aging of wax deposits.The experimental results have important guiding significance for the pipeline transportation of doped crude oils.
基金financial support from Individual Research Grant (Grant reference No.: A20E7c0109) of the Agency for Science,Technology and Research of Singapore (A*STAR)。
文摘Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyrolysis is deemed the most economical option. Currently, the wax obtained from the pyrolysis of waste plastics is mainly used as a feedstock to manufacture chemicals and fuels or added to asphalt for pavement construction, with no other applications of wax being reported. Herein, the thermal pyrolysis of three common waste polyolefin plastics: high-density polyethylene(HDPE), low-density polyethylene(LDPE), and polypropylene(PP), was conducted at 450 ℃. The waste plastics-derived waxes were characterized and studied for a potential new application: phase change materials(PCMs) for thermal energy storage(TES). Gas chromatography–mass spectrometry analysis showed that paraffin makes up most of the composition of HDPE and LDPE waxes, whereas PP wax contains a mixture of naphthene, isoparaffin, olefin, and paraffin. Diff erential scanning calorimetry(DSC) analysis indicated that HDPE and LDPE waxes have a peak melting temperature of 33.8 ℃ and 40.3 ℃, with a relatively high latent heat of 103.2 J/g and 88.3 J/g, respectively, whereas the PP wax was found to have almost negligible latent heat. Fourier transform infrared spectroscopy and DSC results revealed good chemical and thermal stability of HDPE and LDPE waxes after 100 cycles of thermal cycling. Performance evaluation of the waxes was also conducted using a thermal storage pad to understand their thermoregulation characteristics for TES applications.
基金supported by the National Natural Science Foundation of China(32002036)。
文摘In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.Here,we developed an optimized protocol to simplify the process and improve RNA sensitivity.We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution,as in the whole-mount ISH method in the optimized protocol.Using the optimized protocol,we examined the expression patterns of the CLAVATA3(CLV3)and WUSCHEL(WUS)genes in shoot apical meristems and floral meristems of Cucumis sativus(cucumber)and Arabidopsis thaliana(Arabidopsis).The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.Moreover,the optimized protocol achieved high signal sensitivity.The optimized protocol was successful for both cucumber and Arabidopsis,which indicates it might have general applicability to most plants.
基金supported by the National Natural Science Foundation of China, China (No. 51874047)the Key Science and Technology Project of Changsha City, China (No. kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.
基金supported by the National Key Research and Development Program of China (2022YFF1003200)the National Natural Science Foundation of China (31730093)。
文摘Drought and heat stresses cause yield losses in alfalfa,a forage crop cultivated worldwide.Improving its drought and heat tolerance is desirable for maintaining alfalfa productivity in hot,arid regions.Cuticular wax forms a protective barrier on aerial surfaces of land plants against environmental stresses.ABCG11encodes an ATP binding cassette(ABC) transporter that functions in the cuticular wax transport pathway.In this study,Zx ABCG11 from the xerophyte Zygophyllum xanthoxylum was introduced into alfalfa by Agrobacterium tumefaciens-mediated transformation.Compared to the wild type(WT),transgenic alfalfa displayed faster growth,higher wax crystal density,and thicker cuticle on leaves under normal condition.Under either drought or heat treatment in greenhouse conditions,the plant height and shoot biomass of transgenic lines were significantly higher than those of the WT.Transgenic alfalfa showed excellent growth and 50% greater hay yield than WT under field conditions in a hot,arid region.Overexpression of Zx ABCG11 up-regulated wax-related genes and resulted in more cuticular wax deposition,which contributed to reduction of cuticle permeability and thus increased water retention and photosynthesis capacity of transgenic alfalfa.Thus,overexpression of Zx ABCG11 can simultaneously improve biomass yield,drought and heat tolerance in alfalfa by increasing cuticular wax deposition.Our study provides a promising avenue for developing novel forage cultivars suitable for planting in hot,arid,marginal lands.
基金This work was supported by the National Natural Science Foundation of China(31772042)Ramóny Cajal grant(RYC2020-030365-I)+1 种基金Xunta de Galicia for supporting the program(Excelencia-ED431F2022/01)the Key Research&Development Program of Zhejiang Province(2021C02015).
文摘Cuticular wax plays a major role in the growth and storage of plant fruits.The cuticular wax coating,which covers the outermost layer of a fruit’s epidermal cells,is insoluble in water.Cuticular wax is mainly composed of very long-chain fatty acids(VLCFAs);their derivatives,including esters,primary alcohols,secondary alcohols,aldehydes,and ketones;and triterpenoids.This complex mixture of lipids is probably biosynthesized in the epidermal cells of most plants and exuded onto the surface.Cuticular wax not only makes the fruit less susceptible to microbial infection but also reduces mechanical damage to the fruit,thereby maintaining the fruit’s commodity value.To date,research has mostly focused on the changes,function,and regulation of fruit wax before harvest,while ignoring the changes and functions of wax in fruit storage.This paper reviews on the composition,structure,and metabolic regulation of cuticular wax in fruits.It also focuses on postharvest factors affecting wax composition,such as storage temperature,relative humidity(RH),gas atmosphere,and as exogenous hormones;and the effects of wax on fruit postharvest quality,including water dispersion,fruit softening,physiological disorders,and disease resistance.These summaries may be of assistance in better understanding the changes in cuticular wax in postharvest fruit and the resulting effects on fruit quality.
基金supported by the Research and Technology Directorate of National Iranian Oil Company
文摘Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS). Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications. In this investigation regular γ- and nano-structured (N-S) alumina as well as CNTs-covered regular γ- and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru. The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS. γ-Al2O3 was prepared by calcination of bohemite and N-S-Al2O3 was prepared by sol-gel method using aluminum chloride as starting material. Catalyst evaluations indicated that N-S-Al2O3 was superior to regular γ-Al2O3 and that CNTs-covered alumina supports were favored over non-covered ones in terms of activity and heavy hydrocarbon selectivity. These were justified by porosimetric characteristics of the catalysts and existence of CNTs points of view. CNTs-covered catalysts also showed higher wax selectivity and better resistance to deactivation. Furthermore, TPR analysis indicated that the cobalt aluminate phase, which is responsible for the permanent deactivation of alumina supported Co-based catalysts, did not form on alumina supported Co-based catalysts covered with CNTs due to weaker interactions between cobalt and alumina.
文摘The Fischer-Tropsch synthesis is a significant technology for converting coal,natural gas,and biomass into synthetic fuels.In recent years,the use of microchannel reactors for the Fischer-Tropsch synthesis has attracted significant attention.Fischer-Tropsch synthesis experiments were carried out in a microchannel reactor and the influences of reaction conditions on the experimental results were investigated in this study.Based on the experimental data,a dynamic multi-component pseudo-homogeneous variable-volume flow model of microchannel reactors for the Fischer-Tropsch synthesis was built to determine the pressure-,velocity-,conversion-and(component-wise)concentration-distributions in reaction channels.The model takes into account the combined effects of gas volume expansion caused by the frictional pressure drop and gas volume contraction caused by reaction consumption.A novel effective method for calculating the pressure and superficial gas velocity values in microchannel reactors was proposed in the model.Besides that,two sets of experimental data were selected from references to evaluate the validity and accuracy of the model.The reaction performances in the microchannels were analyzed carefully based on the calculated results.
基金The work received the support of by National Natural Science Foundation of China(52272338)Major Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-M202212901,KJZD-K202012903)Young Elite Scientists Sponsorship Program(2020-JCJQ-QT-005).
文摘Wax deposition in oil-water stratified flow is commonly encountered onshore and offshore oil production pipe systems,and typically reduces transportation capacity of oil.The accurate predicted model of wax deposition has becomes an indispensable approach to design effective remediation strategies.However,a reliable mechanistic model for wax deposition prediction in oil-water two-phase stratified pipe flow is lacking to validate the deposition process.In this work,a three-dimensional(axial,radial,and angular)robust wax deposit model for oil-water stratified circular pipe flow was developed.The model of formation of a gel deposit based on the first principles of rheology was developed,associated with the results obtained from hydrodynamics and heat/mass transfer simulations.The predictions for wax deposition are found to compare satisfactorily with experimental data with two different oils for single phase and four different water cuts for oil-water stratified pipe flow.It can be seen from the wax gelation mechanism that an increase in water cut can help to reduce the wall/oil-deposit interface shear stress,thereby leading to an increase in the degree of gelation as well as the deposit rate.Furthermore,a local deposit analysis in the circumferential direction was conducted,for water cut 75%and total flow rate 5 m3/h,which provided insights to understand that the thickness on pipe wall was roughly uniformly distributed locates near the top of the pipe and the nearer the position gets close to two points,where the oil-water interface contacts the inner wall,the deposition thickness quickly dropped to 0.It was attributed to the fact that a roughly uniformly thickness far away from the oil-water interface contact the inner wall resulted in the slowly changes temperature along the circumferential pipe wall wetted by oil.
基金supported by National Natural Science Foundation of China(Major Program No.U19B200052)Science and Technology Innovation Seedling Project of Sichuan Province,China(No.2021079)+2 种基金NationalNatural Science Foundation Young Scientists Fund of China(No.51904259)School-Level Key Program of Chengdu Technological University,China(Nos.2021ZR0062022ZR019).
文摘The coupled formation of wax crystals and hydrates is a critical issue for the safety of deep-sea oil and gas exploration and subsea transport pipeline flow.Therefore,this paper conducts an experimental study on the characteristics of methane hydrate formation in a water-in-oil(W/O)system with different wax crystal contents and explores the influence of different initial experimental pressures on the induction period and maximum rate of hydrate formation.The wavelet function was introduced to process the reaction rate and calculate the maximum speed of hydrate formation.Notably,the higher the pressure,the smaller the maximum rate of hydrate formation.We observed that wax crystal precipitation increases the viscosity of the emulsion,which limits the diffusion of gas in the liquid phase during hydrate nucleation and thus delays the hydrate nucleation.The methane gas precipitation also affects the remaining fraction’s wax content and therefore affects the wax precipitation.Secondary hydrate formation was observed several times during the experiment,increasing the risk of pipeline blockage.Overall,this work provides insights into the effect of wax crystal precipitation on hydrate behaviour that could facilitate flow assurance applications in subsea multiphase pipelines and inform the safe transportation of oil and gas pipelines.
文摘Objective: To investigate the effect of wax therapy in pain care of patients with rheumatoid arthritis. Methods: Convenience sampling method was used to select inpatients with rheumatoid arthritis admitted to the rheumatology and immunology department of a 3A hospital in Jingzhou City. 75 patients from January 2021 to June 2021 were selected as the control group, and 75 patients from January 2022 to June 2022 were selected as the observation group. The control group was given routine nursing, and the observation group was implemented wax therapy nursing on the basis of the control group. The relief of clinical symptoms (morning stiffness time, pain score) and quality of life score of the two groups were observed. Results: After intervention, there was statistical significance between the two groups (P Conclusion: Wax therapy can improve the time of morning stiffness, the degree of pain and the quality of life of patients with rheumatoid arthritis.