This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwa...This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.展开更多
Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots...Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots(USLR).An experiment was implemented to verify the swimming along the straight line of USLR.A simulation platform is also established for the analysis of the swimming of USLR.To figure out adaptive swimming of USLR to different underwater environments,the relationships between CPG parameters and maximum swimming speed have been discussed,and the switching between different swimming modes has been implemented.展开更多
As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we p...As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we present a comprehensive survey of cooperation issues,one of the key components of UMRS,from the perspective of the emergence of new functions.More specifically,we categorize the cooperation in terms of task-space,motion-space,measurement-space,as well as their combination.Further,we analyze the architecture of UMRS from three aspects,i.e.,the performance of the individual underwater robot,the new functions of underwater robots,and the technical approaches of MRS.To conclude,we have discussed related promising directions for future research.This survey provides valuable insight into the reasonable utilization of UMRS to attain diverse underwater tasks in complex ocean application scenarios.展开更多
In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general mo...In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable. The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method.展开更多
The research on underwater ship-hull cleaning robot was conducted on the purpose of realizing the automation of cleaning underwater ship hull so that service life of ship will be prolonged and ship speed will raised. ...The research on underwater ship-hull cleaning robot was conducted on the purpose of realizing the automation of cleaning underwater ship hull so that service life of ship will be prolonged and ship speed will raised. Moreover, fuel consumption and the work intensity of divers will be reduced. In this paper, the current situation and the latest technology in China and abroad were analyzed;meanwhile, the typical characteristics of the underwater cleaning robot were introduced. According to the work principle of the underwater cleaning robot, the emphasis was put on the analysis and study of permanent-magnetic absorption, magnetic wheel, airproof and anticorrosion, underwater cleaning equipment and control system. The robot is easy in rotation and simple in control.展开更多
An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors ...An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control(FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics(CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.展开更多
In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be proces...In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.展开更多
It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage,a simulation platform for the underwater quadruped walking robot base...It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage,a simulation platform for the underwater quadruped walking robot based on Kane dynamic model and CPG-based controller is constructed. The Kane dynamic model of the underwater quadruped walking robot is processed with a commercial package MotionGenesis Kane 5. 3. The forces between the feet and ground are represented as a spring and damper. The relation between coefficients of spring and damper and stability of underwater quadruped walking robot in the stationary state is studied. The CPG-based controller consisted of Central Pattern Generator( CPG) and PD controller is presented,which can be used to control walking of the underwater quadruped walking robot. The relation between CPG parameters and walking speed of underwater quadruped walking robot is investigated. The relation between coefficients of spring and damper and walking speed of underwater quadruped walking robot is studied. The results show that the simulation platform can imitate the stable walking of the underwater quadruped walking robot.展开更多
To satisfy the demand for good quality underwater welding and maintenance of nuclear power stations,a set of local dry automatic welding systems has been developed.These systems were based on an underwater robot that ...To satisfy the demand for good quality underwater welding and maintenance of nuclear power stations,a set of local dry automatic welding systems has been developed.These systems were based on an underwater robot that consisted of a special high-power underwater welding power supply,diving wire feeder,mini drain cap,welding robot,and special underwater welding torch.With a digital signal controller microprocessor as its core and combined with a dual inverter topology,the welding power supply was characterized by full-digital construction and multi-waveform flexible output.A compact diving wire feeding device was designed,based on the armature voltage negative feedback and high-frequency chopping pulse width modulation.This device yielded a high-efficiency seal of the driving motor with the help of dynamic and static sealing technology.To overcome the difficulty of local protection and deslagging in the welding area,a mini drain cap(with a duplexgas structure)based on the principle of the convergent nozzle was designed.The practical tests and the underwater welding experiments revealed that the underwater robotic local dry welding system is quite feasible.That is,the system could strike the arc stably and reliably in the shallow water environment,and formed beautiful welding seams.展开更多
In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user pro...In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.展开更多
The purpose of this study is to design a fractional-order super-twisting sliding-mode controller for a class of nonlinear fractionalorder systems.The proposed method has the following advantages:(1)Lyapunov stability ...The purpose of this study is to design a fractional-order super-twisting sliding-mode controller for a class of nonlinear fractionalorder systems.The proposed method has the following advantages:(1)Lyapunov stability of the overall closed-loop system,(2)output tracking error’s convergence to zero,(3)robustness against external uncertainties and disturbances,and(4)reduction of the chattering phenomenon.To investigate the performance of the method,the proposed controller is applied to an autonomous underwater robot and Lorenz chaotic system.Finally,a simulation is performed to verify the potential of the proposed method.展开更多
As one of the most effective vehicles for ocean development and exploration,underwater gliding robots(UGRs)have the unique characteristics of low energy consumption and strong endurance.Moreover,by borrowing the motio...As one of the most effective vehicles for ocean development and exploration,underwater gliding robots(UGRs)have the unique characteristics of low energy consumption and strong endurance.Moreover,by borrowing the motion principles of current underwater robots,a variety of novel UGRs have emerged with improving their maneuverability,concealment,and environmental friendliness,which significantly broadens the ocean applications.In this paper,we provide a comprehensive review of underwater gliding robots,including prototype design and their key technologies.From the perspective of motion characteristics,we categorize the underwater gliding robots in terms of traditional underwater gliders(UGs),hybrid-driven UGs,bio-inspired UGs,thermal UGs,and others.Correspondingly,their buoyancy driven system,dynamic and energy model,and motion control are concluded with detailed analysis.Finally,we have discussed the current critical issues and future development.This review offers valuable insight into the development of next-generation underwater robots well-suited for various oceanic applications,and aims to gain more attention of researchers and engineers to this growing field.展开更多
When an underwater robot works with its manipulator, it is very critical to keep the position and attitude stable in wave. The modeling, numerical calculus of the rolling motion of a small openframe underwater robot i...When an underwater robot works with its manipulator, it is very critical to keep the position and attitude stable in wave. The modeling, numerical calculus of the rolling motion of a small openframe underwater robot in wave was discussed. A sliding mode control(SMC) strategy with adaptive fuzzy reasoning is presenated to change the rolling response process of the underwater robot by using the two lateral thrusters to reduce the rolling amplitude when the manipulators are working. The results comparing between the simulation and the numerical calculus has shown the effectiveness. There is few analogous research on underwater robot attitudes in wave. Some attempts are made here.展开更多
Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body an...Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body and fluid to provide the power of consecutive forward force.This swaying can be idealized by considering oscillations of a soft beam immersed in water when waves of vibration travel down at a constant speed.The present study employs a kind of large deformations induced by nonlinear vibrations of a soft pipe conveying fluid to design an underwater bio-inspired snake robot that consists of a rigid head and a soft tail.When the head is fixed,experiments show that a second mode vibration of the tail in water occurs as the internal flow velocity is beyond a critical value.Then the corresponding theoretical model based on the absolute nodal coordinate formulation(ANCF)is established to describe nonlinear vibrations of the tail.As the head is free,the theoretical modeling is combined with the computational fluid dynamics(CFD)analysis to construct a fluid-structure interaction(FSI)simulation model.The swimming speed and swaying shape of the snake robot are obtained through the FSI simulation model.They are in good agreement with experimental results.Most importantly,it is demonstrated that the propulsion speed can be improved by 21%for the robot with vibrations of the tail compared with that without oscillations in the pure jet mode.This research provides a new thought to design driving devices by using nonlinear flow-induced vibrations.展开更多
Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner...Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner modulation mechanism of the intensity type optical fiber. The principle and structure of the sensor are introduced in detail. The static and dynamic characteristics are analyzed theoretically and experimentally. The dynamic characteristic model is built and the simulation is made by using genetic algorithm based on neural network. In order to use the sensor perfectly, the recognition model of the sensor is built on the basis of the principle of “inverse solution” using neural networks. The control precision and sensitivity of the manipulator are improved.展开更多
Underwater robot technology has shown impressive results in applications such as underwater resource detection.For underwater applications that require extremely high flexibility,robots cannot replace skills that requ...Underwater robot technology has shown impressive results in applications such as underwater resource detection.For underwater applications that require extremely high flexibility,robots cannot replace skills that require human dexterity yet,and thus humans are often required to directly perform most underwater operations.Wearable robots(exoskeletons)have shown outstanding results in enhancing human movement on land.They are expected to have great potential to enhance human underwater movement.The purpose of this survey is to analyze the state-of-the-art of underwater exoskeletons for human enhancement,and the applications focused on movement assistance while excluding underwater robotic devices that help to keep the temperature and pressure in the range that people can withstand.This work discusses the challenges of existing exoskeletons for human underwater movement assistance,which mainly includes human underwater motion intention perception,underwater exoskeleton modeling and human-cooperative control.Future research should focus on developing novel wearable robotic structures for underwater motion assistance,exploiting advanced sensors and fusion algorithms for human underwater motion intention perception,building up a dynamic model of underwater exoskeletons and exploring human-in-theloop control for them.展开更多
A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, th...A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, the drag coefficient and lift coefficient are the two critical parameters which are obtained by the digital particle image velocimetry (DPIV) and the force transducer experiment. Numerical simulation and physical experi- ments have been performed to verify this dynamic model.展开更多
In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller...In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.展开更多
In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was ...In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.展开更多
Snake Robots(SR)have been successfully deployed and proved to attain bio-inspired solutions owing to its capability to move in harsh environments,a characteristic not found in other kinds of robots(like wheeled or leg...Snake Robots(SR)have been successfully deployed and proved to attain bio-inspired solutions owing to its capability to move in harsh environments,a characteristic not found in other kinds of robots(like wheeled or legged robots).Underwater Snake Robots(USR)establish a bioinspired solution in the domain of underwater robotics.It is a key challenge to increase the motion efficiency in underwater robots,with respect to forwarding speed,by enhancing the locomotion method.At the same time,energy efficiency is also considered as a crucial issue for long-term automation of the systems.In this aspect,the current research paper concentrates on the design of effectual Locomotion of Bioinspired Underwater Snake Robots using Metaheuristic Algorithm(LBIUSR-MA).The proposed LBIUSR-MA technique derives a bi-objective optimization problem to maximize the ForwardVelocity(FV)and minimize the Average Power Consumption(APC).LBIUSR-MA technique involves the design ofManta Ray Foraging Optimization(MRFO)technique and derives two objective functions to resolve the optimization issue.In addition to these,effective weighted sum technique is also used for the integration of two objective functions.Moreover,the objective functions are required to be assessed for varying gait variables so as to inspect the performance of locomotion.A detailed set of simulation analyses was conducted and the experimental results demonstrate that the developed LBIUSR-MA method achieved a low Average Power Consumption(APC)value of 80.52W underδvalue of 50.The proposed model accomplished the minimum PAC and maximum FV of USR in an effective manner.展开更多
文摘This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.
文摘Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots(USLR).An experiment was implemented to verify the swimming along the straight line of USLR.A simulation platform is also established for the analysis of the swimming of USLR.To figure out adaptive swimming of USLR to different underwater environments,the relationships between CPG parameters and maximum swimming speed have been discussed,and the switching between different swimming modes has been implemented.
基金This work was supported in part by the National Natural Science Foundation of China(U1909206,61725305,61903007,62073196)in part by the S&T Program of Hebei(F2020203037).
文摘As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we present a comprehensive survey of cooperation issues,one of the key components of UMRS,from the perspective of the emergence of new functions.More specifically,we categorize the cooperation in terms of task-space,motion-space,measurement-space,as well as their combination.Further,we analyze the architecture of UMRS from three aspects,i.e.,the performance of the individual underwater robot,the new functions of underwater robots,and the technical approaches of MRS.To conclude,we have discussed related promising directions for future research.This survey provides valuable insight into the reasonable utilization of UMRS to attain diverse underwater tasks in complex ocean application scenarios.
文摘In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable. The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method.
基金Key Project funded by Department of Science & Technology of Heilongjiang Province (GB03A507)
文摘The research on underwater ship-hull cleaning robot was conducted on the purpose of realizing the automation of cleaning underwater ship hull so that service life of ship will be prolonged and ship speed will raised. Moreover, fuel consumption and the work intensity of divers will be reduced. In this paper, the current situation and the latest technology in China and abroad were analyzed;meanwhile, the typical characteristics of the underwater cleaning robot were introduced. According to the work principle of the underwater cleaning robot, the emphasis was put on the analysis and study of permanent-magnetic absorption, magnetic wheel, airproof and anticorrosion, underwater cleaning equipment and control system. The robot is easy in rotation and simple in control.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11372112 and 10772068)
文摘An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control(FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics(CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage,a simulation platform for the underwater quadruped walking robot based on Kane dynamic model and CPG-based controller is constructed. The Kane dynamic model of the underwater quadruped walking robot is processed with a commercial package MotionGenesis Kane 5. 3. The forces between the feet and ground are represented as a spring and damper. The relation between coefficients of spring and damper and stability of underwater quadruped walking robot in the stationary state is studied. The CPG-based controller consisted of Central Pattern Generator( CPG) and PD controller is presented,which can be used to control walking of the underwater quadruped walking robot. The relation between CPG parameters and walking speed of underwater quadruped walking robot is investigated. The relation between coefficients of spring and damper and walking speed of underwater quadruped walking robot is studied. The results show that the simulation platform can imitate the stable walking of the underwater quadruped walking robot.
基金This work was supported by the National Natural Science Foundation of China(Grant Numbers 51375173).
文摘To satisfy the demand for good quality underwater welding and maintenance of nuclear power stations,a set of local dry automatic welding systems has been developed.These systems were based on an underwater robot that consisted of a special high-power underwater welding power supply,diving wire feeder,mini drain cap,welding robot,and special underwater welding torch.With a digital signal controller microprocessor as its core and combined with a dual inverter topology,the welding power supply was characterized by full-digital construction and multi-waveform flexible output.A compact diving wire feeding device was designed,based on the armature voltage negative feedback and high-frequency chopping pulse width modulation.This device yielded a high-efficiency seal of the driving motor with the help of dynamic and static sealing technology.To overcome the difficulty of local protection and deslagging in the welding area,a mini drain cap(with a duplexgas structure)based on the principle of the convergent nozzle was designed.The practical tests and the underwater welding experiments revealed that the underwater robotic local dry welding system is quite feasible.That is,the system could strike the arc stably and reliably in the shallow water environment,and formed beautiful welding seams.
文摘In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.
文摘The purpose of this study is to design a fractional-order super-twisting sliding-mode controller for a class of nonlinear fractionalorder systems.The proposed method has the following advantages:(1)Lyapunov stability of the overall closed-loop system,(2)output tracking error’s convergence to zero,(3)robustness against external uncertainties and disturbances,and(4)reduction of the chattering phenomenon.To investigate the performance of the method,the proposed controller is applied to an autonomous underwater robot and Lorenz chaotic system.Finally,a simulation is performed to verify the potential of the proposed method.
基金the National Natural Science Foundation of China(61725305,62033013,U1909206,T2121002)。
文摘As one of the most effective vehicles for ocean development and exploration,underwater gliding robots(UGRs)have the unique characteristics of low energy consumption and strong endurance.Moreover,by borrowing the motion principles of current underwater robots,a variety of novel UGRs have emerged with improving their maneuverability,concealment,and environmental friendliness,which significantly broadens the ocean applications.In this paper,we provide a comprehensive review of underwater gliding robots,including prototype design and their key technologies.From the perspective of motion characteristics,we categorize the underwater gliding robots in terms of traditional underwater gliders(UGs),hybrid-driven UGs,bio-inspired UGs,thermal UGs,and others.Correspondingly,their buoyancy driven system,dynamic and energy model,and motion control are concluded with detailed analysis.Finally,we have discussed the current critical issues and future development.This review offers valuable insight into the development of next-generation underwater robots well-suited for various oceanic applications,and aims to gain more attention of researchers and engineers to this growing field.
基金Leading Project of Shanghai Science and Technology, China (No.07dz05813)
文摘When an underwater robot works with its manipulator, it is very critical to keep the position and attitude stable in wave. The modeling, numerical calculus of the rolling motion of a small openframe underwater robot in wave was discussed. A sliding mode control(SMC) strategy with adaptive fuzzy reasoning is presenated to change the rolling response process of the underwater robot by using the two lateral thrusters to reduce the rolling amplitude when the manipulators are working. The results comparing between the simulation and the numerical calculus has shown the effectiveness. There is few analogous research on underwater robot attitudes in wave. Some attempts are made here.
基金the National Natural Science Foundation of China(No.12072119)。
文摘Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body and fluid to provide the power of consecutive forward force.This swaying can be idealized by considering oscillations of a soft beam immersed in water when waves of vibration travel down at a constant speed.The present study employs a kind of large deformations induced by nonlinear vibrations of a soft pipe conveying fluid to design an underwater bio-inspired snake robot that consists of a rigid head and a soft tail.When the head is fixed,experiments show that a second mode vibration of the tail in water occurs as the internal flow velocity is beyond a critical value.Then the corresponding theoretical model based on the absolute nodal coordinate formulation(ANCF)is established to describe nonlinear vibrations of the tail.As the head is free,the theoretical modeling is combined with the computational fluid dynamics(CFD)analysis to construct a fluid-structure interaction(FSI)simulation model.The swimming speed and swaying shape of the snake robot are obtained through the FSI simulation model.They are in good agreement with experimental results.Most importantly,it is demonstrated that the propulsion speed can be improved by 21%for the robot with vibrations of the tail compared with that without oscillations in the pure jet mode.This research provides a new thought to design driving devices by using nonlinear flow-induced vibrations.
文摘Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner modulation mechanism of the intensity type optical fiber. The principle and structure of the sensor are introduced in detail. The static and dynamic characteristics are analyzed theoretically and experimentally. The dynamic characteristic model is built and the simulation is made by using genetic algorithm based on neural network. In order to use the sensor perfectly, the recognition model of the sensor is built on the basis of the principle of “inverse solution” using neural networks. The control precision and sensitivity of the manipulator are improved.
基金supported in part by the National Key Research and Development Program of China(2021YFF0501600)the National Natural Science Foundation of China(U1913601)+6 种基金the Major Science and Technology Projects of Anhui Province(202103a05020004)the China Postdoctoral Science Foundation(2021M693079)the Fundamental Research Funds for the Central Universities(WK2100000020)the State Key Laboratory of Mechanical System and Vibration(MSV202219)the Ministry of Science and Higher Education of the Russian Federation as Part of World-Class Research Center Program:Advanced Digital Technologies(075-15-2020-903)the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang UniversityChina(ICT2022B42)。
文摘Underwater robot technology has shown impressive results in applications such as underwater resource detection.For underwater applications that require extremely high flexibility,robots cannot replace skills that require human dexterity yet,and thus humans are often required to directly perform most underwater operations.Wearable robots(exoskeletons)have shown outstanding results in enhancing human movement on land.They are expected to have great potential to enhance human underwater movement.The purpose of this survey is to analyze the state-of-the-art of underwater exoskeletons for human enhancement,and the applications focused on movement assistance while excluding underwater robotic devices that help to keep the temperature and pressure in the range that people can withstand.This work discusses the challenges of existing exoskeletons for human underwater movement assistance,which mainly includes human underwater motion intention perception,underwater exoskeleton modeling and human-cooperative control.Future research should focus on developing novel wearable robotic structures for underwater motion assistance,exploiting advanced sensors and fusion algorithms for human underwater motion intention perception,building up a dynamic model of underwater exoskeletons and exploring human-in-theloop control for them.
基金Project supported by the National Natural Science Foundation of China(Nos.61503008 and 51575005)the China Postdoctoral Science Foundation(No.2015M570013)
文摘A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, the drag coefficient and lift coefficient are the two critical parameters which are obtained by the digital particle image velocimetry (DPIV) and the force transducer experiment. Numerical simulation and physical experi- ments have been performed to verify this dynamic model.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.
文摘In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.
文摘Snake Robots(SR)have been successfully deployed and proved to attain bio-inspired solutions owing to its capability to move in harsh environments,a characteristic not found in other kinds of robots(like wheeled or legged robots).Underwater Snake Robots(USR)establish a bioinspired solution in the domain of underwater robotics.It is a key challenge to increase the motion efficiency in underwater robots,with respect to forwarding speed,by enhancing the locomotion method.At the same time,energy efficiency is also considered as a crucial issue for long-term automation of the systems.In this aspect,the current research paper concentrates on the design of effectual Locomotion of Bioinspired Underwater Snake Robots using Metaheuristic Algorithm(LBIUSR-MA).The proposed LBIUSR-MA technique derives a bi-objective optimization problem to maximize the ForwardVelocity(FV)and minimize the Average Power Consumption(APC).LBIUSR-MA technique involves the design ofManta Ray Foraging Optimization(MRFO)technique and derives two objective functions to resolve the optimization issue.In addition to these,effective weighted sum technique is also used for the integration of two objective functions.Moreover,the objective functions are required to be assessed for varying gait variables so as to inspect the performance of locomotion.A detailed set of simulation analyses was conducted and the experimental results demonstrate that the developed LBIUSR-MA method achieved a low Average Power Consumption(APC)value of 80.52W underδvalue of 50.The proposed model accomplished the minimum PAC and maximum FV of USR in an effective manner.