为了提高农业自动化杂草检测的效率和准确性,提出了一种基于改进YOLOv8(You Only Look Once version 8)的百合地杂草分类识别方法。针对百合地杂草形态多样、颜色特征复杂且区分度低的难题,引入了TransNext聚合注意力模块和DCNv2(Deform...为了提高农业自动化杂草检测的效率和准确性,提出了一种基于改进YOLOv8(You Only Look Once version 8)的百合地杂草分类识别方法。针对百合地杂草形态多样、颜色特征复杂且区分度低的难题,引入了TransNext聚合注意力模块和DCNv2(Deformable ConvNet V2)注意力机制,优化了YOLOv8-n模型的特征提取和目标识别性能。通过实施数据增强策略,显著地提升了模型的泛化能力和识别准确性。实验结果表明,改进后的模型在自建数据集上的准确率达到90.1%,相比于原始YOLOv8模型的准确率提高了6百分点,充分展现了其在复杂非结构化背景下进行杂草分类的潜力和应用价值。展开更多
文摘为了提高农业自动化杂草检测的效率和准确性,提出了一种基于改进YOLOv8(You Only Look Once version 8)的百合地杂草分类识别方法。针对百合地杂草形态多样、颜色特征复杂且区分度低的难题,引入了TransNext聚合注意力模块和DCNv2(Deformable ConvNet V2)注意力机制,优化了YOLOv8-n模型的特征提取和目标识别性能。通过实施数据增强策略,显著地提升了模型的泛化能力和识别准确性。实验结果表明,改进后的模型在自建数据集上的准确率达到90.1%,相比于原始YOLOv8模型的准确率提高了6百分点,充分展现了其在复杂非结构化背景下进行杂草分类的潜力和应用价值。
文摘为了提高小目标识别和分类的实时性,同时降低识别系统的资源消耗,本文提出了一种简易、高效的现场可编程门阵列(Field Programmable Gate Array,FPGA)小目标识别分类系统。该系统首先通过图像预处理消除图像噪点,并采用并行计算提升系统实时性。然后将处理后的图像与模板进行匹配计算得到识别结果,设计的模板匹配电路具有较小的硬件复杂度和较快的处理速度。实验结果表明,本文所提出的识别系统在680×480图像分辨下,可达137.5帧/s的处理速度,实时性强,同时仅消耗了9个块随机存储器(Block Random Access Memory,BRAM)和2个数字信号处理器(Digital Signal Processor,DSP),硬件资源消耗较少,在处理小目标识别和分类问题上有较好的实用价值。