期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic Behavior and Deformation Analysis of the Fish Cage System Using Mass-Spring Model 被引量:4
1
作者 Chun Woo LEE Jihoon LEE Subong PARK 《China Ocean Engineering》 SCIE EI CSCD 2015年第3期311-324,共14页
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being c... Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds. 展开更多
关键词 fish cage mathematical model aquaculture computer simulation mass-spring model
下载PDF
Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations 被引量:7
2
作者 WU LiYan JIAO ZhiBin +3 位作者 SONG YuQiu REN WenTao NIU ShiChao HAN ZhiWu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1111-1117,共7页
In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reducti... In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars' attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellus exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First,exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and3-dimensional(3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the "water-trapping" effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively.Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth. 展开更多
关键词 water trapping structure drag reduction surface fish scales simulations bionic surface and interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部