Accurate determination of flushing time is crucial for maintaining sustainable production in fish culture zones (FCZs), as it represents the physical self-purification capability via tidal exchange with clean water ...Accurate determination of flushing time is crucial for maintaining sustainable production in fish culture zones (FCZs), as it represents the physical self-purification capability via tidal exchange with clean water in the outer sea. However, owing to the temporal and spatial complexity of the coastal flushing process, existing methods for determining flushing time may not be generally applicable. In this paper, a systematic method for determining the flushing time in FCZs is presented, in which bathymetry, runoff, tidal range and stratification are properly accounted for. We determine the flushing time via numerical tracer experiments, using robust 3D hydrodynamic and mass transport models. For FCZs located in sheltered and land-locked tidal inlets, the system boundary can be naturally defined at the connection with the open sea. For FCZs located in open'waters, hydrodynamic tracking is first used to assess the extent of tidal excursion and thus delimit the initial boundary between clean water and polluted water. This general method is applied to all designated marine FCZs in Hong Kong for both the dry and wet seasons, including 20 sheltered FCZs (in semi-enclosed waters of Tolo Harbour, Mirs Bay, and Port Shelter) and 6 FCZs in open waters. Our results show that flushing time is the longest in inner Port Shelter (about 40 days in dry season), and the shortest for the FCZs in open waters (less than one week in dry season). In addition, the flushing time in dry season is commonly longer than that in wet season: 20%~40% for most well-sheltered FCZs; 2.6-4 times for the others. Our results indicate a positive correlation between the flushing time and distance to open boundary, supporting the view that the flushing time of a FCZ is closely related to its location. This study provides a solid basis for mariculture management such as the determination of carrying capacity of FCZs.展开更多
Fisheries in Lake Victoria have been threatened by declining fish stocks and diversity, environmental degradation due to increased input of pollutants, industrial and municipal waste, overfishing and use of unapproved...Fisheries in Lake Victoria have been threatened by declining fish stocks and diversity, environmental degradation due to increased input of pollutants, industrial and municipal waste, overfishing and use of unapproved fishing <span style="font-family:Verdana;">methods, infestation by aquatic weeds especially water hyacinth, de-oxygenation</span><span style="font-family:Verdana;"> and a reduction in the quantity and quality of water. Remote sensing and GIS are essential tools in detection of fishing grounds which is important in providing fish sustainability for human beings and allows fishing grounds detection at minimal cost and optimizes effort. This research tends to identify the most favorable both environmentally and ecologically satisfactory factors which favor fish breeding and growth. The main aim of the study was to identify habitat variables that promote fish breeding and growth to maturity including the extraction of environmental variables from Landsat 8 images for the study period and using suitability index derived from fishery data. The study concentrated on establishing suitability ratings in different parts of Lake Victoria using lake surface temperature and chlorophyll-a levels. The study was conducted for months;January, May and December 2019 on Lake Victoria (limited by the availability of recent data). The factors were analysed and the favorable regions mapped satisfying the conditions for fish breeding. The output obtained illustrated the availability of suitable and habitable zones within the lake using satellite imagery and the suitability index. The fish catch data and satellite derived variables were used to determine habitat suitability indices for fish during January, May and December 2019. More than 90% of the total catch was found to come from the areas with sea surface temperature of 23.0˚C - 28.3˚C and chlorophyll-</span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">concentration between 0.72 - 1.31 mg/m</span><sup><span style="font-family:Verdana;vertical-align:super;">3</span></sup><span style="font-family:Verdana;">. The catch data was used to validate the images. This study indicated the capability of High Satellite Resolution Imageries (HSI) as a tool to map the potential fishing grounds of fish species in Lake Victoria. The variables were affected by climatic change factors like rainfall and temperature of the lake basin and other human activities around the lake and also the species ecosystem like competition or predation.</span>展开更多
基金supported by the Hong Kong Jockey Club Charities Trust (Project Waterman)in part by a grant from the University Grants Committee of the Hong Kong Special Administrative Region (HKSAR),China (Project No. AoE/P-04/04) to the Area of Excellence in Marine Environment Research and Innovative Technology (MERIT)+1 种基金The support from the National Science Fund for Distinguished Young Scholars (Grant No. 50925932)the National Natural Science Foundation of China (Grant No.41001348)
文摘Accurate determination of flushing time is crucial for maintaining sustainable production in fish culture zones (FCZs), as it represents the physical self-purification capability via tidal exchange with clean water in the outer sea. However, owing to the temporal and spatial complexity of the coastal flushing process, existing methods for determining flushing time may not be generally applicable. In this paper, a systematic method for determining the flushing time in FCZs is presented, in which bathymetry, runoff, tidal range and stratification are properly accounted for. We determine the flushing time via numerical tracer experiments, using robust 3D hydrodynamic and mass transport models. For FCZs located in sheltered and land-locked tidal inlets, the system boundary can be naturally defined at the connection with the open sea. For FCZs located in open'waters, hydrodynamic tracking is first used to assess the extent of tidal excursion and thus delimit the initial boundary between clean water and polluted water. This general method is applied to all designated marine FCZs in Hong Kong for both the dry and wet seasons, including 20 sheltered FCZs (in semi-enclosed waters of Tolo Harbour, Mirs Bay, and Port Shelter) and 6 FCZs in open waters. Our results show that flushing time is the longest in inner Port Shelter (about 40 days in dry season), and the shortest for the FCZs in open waters (less than one week in dry season). In addition, the flushing time in dry season is commonly longer than that in wet season: 20%~40% for most well-sheltered FCZs; 2.6-4 times for the others. Our results indicate a positive correlation between the flushing time and distance to open boundary, supporting the view that the flushing time of a FCZ is closely related to its location. This study provides a solid basis for mariculture management such as the determination of carrying capacity of FCZs.
文摘Fisheries in Lake Victoria have been threatened by declining fish stocks and diversity, environmental degradation due to increased input of pollutants, industrial and municipal waste, overfishing and use of unapproved fishing <span style="font-family:Verdana;">methods, infestation by aquatic weeds especially water hyacinth, de-oxygenation</span><span style="font-family:Verdana;"> and a reduction in the quantity and quality of water. Remote sensing and GIS are essential tools in detection of fishing grounds which is important in providing fish sustainability for human beings and allows fishing grounds detection at minimal cost and optimizes effort. This research tends to identify the most favorable both environmentally and ecologically satisfactory factors which favor fish breeding and growth. The main aim of the study was to identify habitat variables that promote fish breeding and growth to maturity including the extraction of environmental variables from Landsat 8 images for the study period and using suitability index derived from fishery data. The study concentrated on establishing suitability ratings in different parts of Lake Victoria using lake surface temperature and chlorophyll-a levels. The study was conducted for months;January, May and December 2019 on Lake Victoria (limited by the availability of recent data). The factors were analysed and the favorable regions mapped satisfying the conditions for fish breeding. The output obtained illustrated the availability of suitable and habitable zones within the lake using satellite imagery and the suitability index. The fish catch data and satellite derived variables were used to determine habitat suitability indices for fish during January, May and December 2019. More than 90% of the total catch was found to come from the areas with sea surface temperature of 23.0˚C - 28.3˚C and chlorophyll-</span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">concentration between 0.72 - 1.31 mg/m</span><sup><span style="font-family:Verdana;vertical-align:super;">3</span></sup><span style="font-family:Verdana;">. The catch data was used to validate the images. This study indicated the capability of High Satellite Resolution Imageries (HSI) as a tool to map the potential fishing grounds of fish species in Lake Victoria. The variables were affected by climatic change factors like rainfall and temperature of the lake basin and other human activities around the lake and also the species ecosystem like competition or predation.</span>