Erperimental method to measure the prompt neutron spectra of 238U fissioninduced by fast neutrons has been developed at HI-13 Tandem Van de Grab Accelerator Laboratory of CIAE. These techniques employ a multi-segment ...Erperimental method to measure the prompt neutron spectra of 238U fissioninduced by fast neutrons has been developed at HI-13 Tandem Van de Grab Accelerator Laboratory of CIAE. These techniques employ a multi-segment fission chamberand tab liquid scintillator neutron detectors. TOF (time of flight) techniques are usedfor prilnny neutrons to select the fission evellts induced by monoenergetic neutronfrom 'H(d, n) reactions instead of breakup neutrons from 'H(d, up) reactions. Thefission neutron TOF spectra are measured in coincidence with the fission fragmellts todistinguish fission neutrons from other secondals neutrons. The method perests measurements to a forly good accuracy under large neutron and gamma ray baCkgroulld.The tecboques are described and experimelltal spectra are presented.展开更多
An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved v...An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.展开更多
To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring(DNFM) system based on the peripheral component interconnectio...To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring(DNFM) system based on the peripheral component interconnection(PCI) e Xtension for Instrumentation express(PXIe) bus was designed.This system comprises a charge-sensitive preamplifier and a field programmable gate array(FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9×10^8cm^-2s^-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A.展开更多
From both the fundamental and applied perspectives, fragment mass distributions are important observablesof fission. We apply the Bayesian neural network (BNN) approach to learn the existing neutron induced fissionyie...From both the fundamental and applied perspectives, fragment mass distributions are important observablesof fission. We apply the Bayesian neural network (BNN) approach to learn the existing neutron induced fissionyields and predict unknowns with uncertainty quantification. Comparing the predicted results with experimentaldata, the BNN evaluation results are found to be satisfactory for the distribution positions and energy dependenciesof fission yields. Predictions are made for the fragment mass distributions of several actinides, which may beuseful for future experiments.展开更多
The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures ...The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well. For the n(thermal)+235 U reaction, the average nuclear temperature of the fission fragment, and the probability distribution of the nuclear temperature, are discussed and compared with the Los Alamos model. The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.展开更多
Calculations of prompt fission neutron spectra (PFNS) from the ^235U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superpo...Calculations of prompt fission neutron spectra (PFNS) from the ^235U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n,xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n,xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n,nf) or (n,2nf) reactions influences the PFNS shape, and the neutron spectra of the (n,xnf) fission-channel are soft compared with the neutron spectra of the (n,f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case.展开更多
The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition o...The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition of the total excitation energy between the fission fragments for the nth+233U fission reactions is determined by the available experimental and evaluation data. The calculated prompt fission neutron spectra agree well with the experimental data. The proportions of high-energy neutrons of prompt fission neutron spectrum versus incident neutron energies are investigated with the theoretical spectra, and the results are consistent with the systematics. The semi-empirical method could be a useful tool for the prompt evaluation of fission neutron spectra.展开更多
A stochastic approach based on one-and two-dimensional Langevin equations is applied to calculate the pre-scission neutron multiplicity,fission probability,anisotropy of fission fragment angular distribution,fission c...A stochastic approach based on one-and two-dimensional Langevin equations is applied to calculate the pre-scission neutron multiplicity,fission probability,anisotropy of fission fragment angular distribution,fission cross section and the evaporation cross section for the compound nuclei ^188Pt,^227Pa and ^251Es in an intermediate range of excitation energies.The chaos weighted wall and window friction formula are used in the Langevin equations.The elongation parameter,c,is used as the first dimension and projection of the total spin of the compound nucleus onto the symmetry axis,K,considered as the second dimension in Langevin dynamical calculations.A constant dissipation coefficient of K,γk=0.077(MeV zs)^-1/2),is used in two-dimensional calculations to reproduce the above mentioned experimental data.Comparison of the theoretical results of the pre-scission neutron multiplicity,fission probability,fission cross section and the evaporation cross section with the experimental data shows that the results of two-dimensional calculations are in better agreement with the experimental data.Furthermore,it is shown that the two-dimensional Langevin equations together with a dissipation coefficient of K,γk=0.077(MeV zs)^-1/2,can satisfactorily reproduce the anisotropy of fission fragment angular distribution for the heavy compound nucleus^251Es.However,a larger value of γk=0.250(MeV zs)^-1/2is needed to reproduce the anisotropy of fission fragment angular distribution for the lighter compound nucleus^227Pa.展开更多
文摘Erperimental method to measure the prompt neutron spectra of 238U fissioninduced by fast neutrons has been developed at HI-13 Tandem Van de Grab Accelerator Laboratory of CIAE. These techniques employ a multi-segment fission chamberand tab liquid scintillator neutron detectors. TOF (time of flight) techniques are usedfor prilnny neutrons to select the fission evellts induced by monoenergetic neutronfrom 'H(d, n) reactions instead of breakup neutrons from 'H(d, up) reactions. Thefission neutron TOF spectra are measured in coincidence with the fission fragmellts todistinguish fission neutrons from other secondals neutrons. The method perests measurements to a forly good accuracy under large neutron and gamma ray baCkgroulld.The tecboques are described and experimelltal spectra are presented.
基金supported by the State Key Development Program for Basic Research of China (Nos. 2008CB717803, 2009GB107001, and2007CB209903)the Research Fund for the Doctoral Program of Higher Education of China (No. 200610011023)
文摘An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.
基金support by the HL-2A experimental teamsupported by National Natural Science Foundation of China(Nos.11375195,11575184)National Magnetic Confinement Fusion Energy Development Research(No.2013GB104003)
文摘To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring(DNFM) system based on the peripheral component interconnection(PCI) e Xtension for Instrumentation express(PXIe) bus was designed.This system comprises a charge-sensitive preamplifier and a field programmable gate array(FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9×10^8cm^-2s^-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A.
基金the National Natural Science Foundation of China(12175064,U2167203)the Outstanding Youth Science Foundation of Hunan Province,China(2022JJ10031)。
文摘From both the fundamental and applied perspectives, fragment mass distributions are important observablesof fission. We apply the Bayesian neural network (BNN) approach to learn the existing neutron induced fissionyields and predict unknowns with uncertainty quantification. Comparing the predicted results with experimentaldata, the BNN evaluation results are found to be satisfactory for the distribution positions and energy dependenciesof fission yields. Predictions are made for the fragment mass distributions of several actinides, which may beuseful for future experiments.
基金Supported by IAEA-CRP(15905)the State Key Laboratory of Nuclear Physics and Technology,Peking University(SKL-NPT)
文摘The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well. For the n(thermal)+235 U reaction, the average nuclear temperature of the fission fragment, and the probability distribution of the nuclear temperature, are discussed and compared with the Los Alamos model. The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.
基金Supported by National Natural Science Foundation of China(11205246,91126010,U1230127,91226102)AEA CRP(15905)Defense Industrial Technology Development Program(B0120110034)
文摘Calculations of prompt fission neutron spectra (PFNS) from the ^235U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n,xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n,xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n,nf) or (n,2nf) reactions influences the PFNS shape, and the neutron spectra of the (n,xnf) fission-channel are soft compared with the neutron spectra of the (n,f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case.
基金Supported by National Natural Science Foundation of China(11205246,91126010,91226102)
文摘The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition of the total excitation energy between the fission fragments for the nth+233U fission reactions is determined by the available experimental and evaluation data. The calculated prompt fission neutron spectra agree well with the experimental data. The proportions of high-energy neutrons of prompt fission neutron spectrum versus incident neutron energies are investigated with the theoretical spectra, and the results are consistent with the systematics. The semi-empirical method could be a useful tool for the prompt evaluation of fission neutron spectra.
基金The support of the Research Committee of the Persian Gulf University
文摘A stochastic approach based on one-and two-dimensional Langevin equations is applied to calculate the pre-scission neutron multiplicity,fission probability,anisotropy of fission fragment angular distribution,fission cross section and the evaporation cross section for the compound nuclei ^188Pt,^227Pa and ^251Es in an intermediate range of excitation energies.The chaos weighted wall and window friction formula are used in the Langevin equations.The elongation parameter,c,is used as the first dimension and projection of the total spin of the compound nucleus onto the symmetry axis,K,considered as the second dimension in Langevin dynamical calculations.A constant dissipation coefficient of K,γk=0.077(MeV zs)^-1/2),is used in two-dimensional calculations to reproduce the above mentioned experimental data.Comparison of the theoretical results of the pre-scission neutron multiplicity,fission probability,fission cross section and the evaporation cross section with the experimental data shows that the results of two-dimensional calculations are in better agreement with the experimental data.Furthermore,it is shown that the two-dimensional Langevin equations together with a dissipation coefficient of K,γk=0.077(MeV zs)^-1/2,can satisfactorily reproduce the anisotropy of fission fragment angular distribution for the heavy compound nucleus^251Es.However,a larger value of γk=0.250(MeV zs)^-1/2is needed to reproduce the anisotropy of fission fragment angular distribution for the lighter compound nucleus^227Pa.