In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur...In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images展开更多
Precise fluorescence imaging of single l-DNA molecules for base pair distance analysis requires a superresolution technique, as these distances are on the order of diffraction limit. Individual l-DNA molecules interca...Precise fluorescence imaging of single l-DNA molecules for base pair distance analysis requires a superresolution technique, as these distances are on the order of diffraction limit. Individual l-DNA molecules intercalated with the fluorescent dye YOYO-1 were investigated at subdiffraction spatial resolution by direct stochastic optical reconstruction microscopy(d STORM). Various dye-to-DNA base pair ratios were imaged by photoswitching YOYO-1 between the fluorescent state and the dark state using two laser sources. The acquired images were reconstructed into a super-resolution image by applying Gaussian fitting to the centroid of the point spread function. By measuring the distances between localized fluorophores, the base pair distances in single DNA molecules for dye-to-DNA base pair ratios of 1:50,1:100, and 1:500 were calculated to be 17.1 0.8 nm, 34.3 2.2 nm, and 170.3 8.1 nm[17_TD$IF], respectively,which were in agreement with theoretical values. These results demonstrate that intercalating dye in a single DNA molecule can be photoswitched without the use of an activator fluorophore, and that super-localization precision at a spatial resolution of 17 nm was experimentally achieved.展开更多
Energy calibration of resistive charge division-based position-sensitive silicon detectors is achieved by parabolic fitting in the traditional method, where the systematic variations of vertex and curvature of the par...Energy calibration of resistive charge division-based position-sensitive silicon detectors is achieved by parabolic fitting in the traditional method, where the systematic variations of vertex and curvature of the parabola with energy must be considered. In this paper we extend the traditional method in order to correct the fitting function, simplify the procedure of calibration and improve the experimental data quality. Instead of a parabolic function as used in the traditional method, a new function describing the relation of position and energy is introduced.The energy resolution of the 8.088 Me V α decay of213 Rn is determined to be about 87 ke V(FWHM), which is better than the result of the traditional method, 104 ke V(FWHM). The improved method can be applied to the energy calibration of resistive charge division-based position-sensitive silicon detectors with various performances.展开更多
基金Supported by the National Basic Research Program of China ("973"Program)(2006CB601201)~~
文摘In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images
基金supported by a grant from Kyung Hee University in 2015(No.KHU-20150618)
文摘Precise fluorescence imaging of single l-DNA molecules for base pair distance analysis requires a superresolution technique, as these distances are on the order of diffraction limit. Individual l-DNA molecules intercalated with the fluorescent dye YOYO-1 were investigated at subdiffraction spatial resolution by direct stochastic optical reconstruction microscopy(d STORM). Various dye-to-DNA base pair ratios were imaged by photoswitching YOYO-1 between the fluorescent state and the dark state using two laser sources. The acquired images were reconstructed into a super-resolution image by applying Gaussian fitting to the centroid of the point spread function. By measuring the distances between localized fluorophores, the base pair distances in single DNA molecules for dye-to-DNA base pair ratios of 1:50,1:100, and 1:500 were calculated to be 17.1 0.8 nm, 34.3 2.2 nm, and 170.3 8.1 nm[17_TD$IF], respectively,which were in agreement with theoretical values. These results demonstrate that intercalating dye in a single DNA molecule can be photoswitched without the use of an activator fluorophore, and that super-localization precision at a spatial resolution of 17 nm was experimentally achieved.
基金Supported by ‘100 Person Project’ of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(11405224 and 11435014)
文摘Energy calibration of resistive charge division-based position-sensitive silicon detectors is achieved by parabolic fitting in the traditional method, where the systematic variations of vertex and curvature of the parabola with energy must be considered. In this paper we extend the traditional method in order to correct the fitting function, simplify the procedure of calibration and improve the experimental data quality. Instead of a parabolic function as used in the traditional method, a new function describing the relation of position and energy is introduced.The energy resolution of the 8.088 Me V α decay of213 Rn is determined to be about 87 ke V(FWHM), which is better than the result of the traditional method, 104 ke V(FWHM). The improved method can be applied to the energy calibration of resistive charge division-based position-sensitive silicon detectors with various performances.