The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous...The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.展开更多
We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponent...We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.展开更多
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur...In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images展开更多
Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate...Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.展开更多
The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of ...The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.展开更多
The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values i...The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared(NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths(412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scatteringcorrection methods.展开更多
The quality of the low frequency electromagnetic data is affected by the spike and the trend noises.Failure in removal of the spikes and the trends reduces the credibility of data explanation.Based on the analyses of ...The quality of the low frequency electromagnetic data is affected by the spike and the trend noises.Failure in removal of the spikes and the trends reduces the credibility of data explanation.Based on the analyses of the causes and characteristics of these noises,this paper presents the results of a preset statistics stacking method(PSSM)and a piecewise linear fitting method(PLFM)in de-noising the spikes and trends,respectively.The magnitudes of the spikes are either higher or lower than the normal values,which leads to distortion of the useful signal.Comparisons have been performed in removing of the spikes among the average,the statistics and the PSSM methods,and the results indicate that only the PSSM can remove the spikes successfully.On the other hand,the spectrums of the linear and nonlinear trends mainly lie in the low frequency band and can change the calculated resistivity significantly.No influence of the trends is observed when the frequency is higher than a certain threshold value.The PLSM can remove effectively both the linear and nonlinear trends with errors around 1% in the power spectrum.The proposed methods present an effective way for de-noising the spike and the trend noises in the low frequency electromagnetic data,and establish a research basis for de-noising the low frequency noises.展开更多
A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materi...A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materials with physical symmetry.The resultant computational software system has been also designed and first carried out in a microcomputer PANAFACOM-U1200 being on line with the X-ray diffractometer D/max-3A.The simu- lated calculation shows that the method is concisely pragmatic and easily popularized,while the results obtained are trust worthy.展开更多
By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybri...By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybrid one_step exponentially fitted method are presented, their order p satisfying 6≤p≤8. The necessary and sufficient conditions for the two methods to be A_ stable are given. Finally, for the fourth order derivative method, the error bound and the necessary and sufficient conditions for it to be median are discussed.展开更多
We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rul...We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rules, exponential basis functions and remainder terms in integral form. We show that this method is the first order convergent in the discrete maximum norm for original problem (independent of the perturbation parameter ε). To illustrate the theoretical results, we solve test problem and we also give the error distributions in the solution in Table 1 and Figures 1-3.展开更多
Antimony selenide(Sb2Se3) films are widely used in phase change memory and solar cells due to their stable switching effect and excellent photovoltaic properties. These properties of the films are affected by the film...Antimony selenide(Sb2Se3) films are widely used in phase change memory and solar cells due to their stable switching effect and excellent photovoltaic properties. These properties of the films are affected by the film thickness. A method combining the advantages of Levenberg–Marquardt method and spectral fitting method(LM–SFM) is presented to study the dependence of refractive index(RI), absorption coefficient, optical band gap, Wemple–Di Domenico parameters, dielectric constant and optical electronegativity of the Sb2Se3films on their thickness. The results show that the RI and absorption coefficient of the Sb2Se3films increase with the increase of film thickness, while the optical band gap decreases with the increase of film thickness. Finally, the reasons why the optical and electrical properties of the film change with its thickness are explained by x-ray diffractometer(XRD), energy dispersive x-ray spectrometer(EDS), Mott–Davis state density model and Raman microstructure analysis.展开更多
The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity d...The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.展开更多
In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the l...In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the leakage flow rate can be obtained by finite element method, computational fluid dynamics method and experimental measurement method. However, it will take much time to carry out the above measurements and calculations. In this paper, the approximate model of parallel grooves based on the narrow groove theory is used to establish the dynamic equations of the gas film for the purpose of obtaining the dynamic parameters of gas film. The nonlinear differential equations of gas film model are solved by Runge-Kutta method and shooting method. The numerical values of the pressure profiles, leakage flux and opening force on the seal surface are integrated, and then compared to experimental data for the reliability of the numerical simulation. The results show that the numerical simulation curves are in good agreement with experimental values. Furthermore, the opening force and the leakage flux are proved to be strongly correlated with the operating parameters. Then, the function-coupling method is introduced to analyze the numerical results to obtain the correlation formulae of the opening force and leakage flux respectively with the operating parameters, i.e., the inlet pressure and the rotating speed. This study intends to provide an effective way to predict the aerodynamic performance for designing and optimizing the groove styles in dry gas seal rapidly and accurately.展开更多
North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change r...North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change rate(GCR) using the polynomial fitting method. In general, the study area was divided into the Shanxi rift, Jing-Jin-Ji(Beijing-Tianjin-Hebei Province), and Bohai Bay Basin(BBB) regions. Results of the distribution of the GCR determined from ground-based gravimetry show that the GCR appears to be "negativepositive-negative" from west to east, which indicates that different geophysical mechanisms are involved in the tectonic activities of these regions. However, GRACE solutions are conducted over a larger spatial scale and are able to show a difference between southern and northern areas and a mass redistribution of land water storage.展开更多
A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and per...A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.展开更多
The period of a torsion pendulum would vary under the disturbances of environmental noise factors. In order to subtract the period of the pendulum from external influence, we employ the correlation method to determine...The period of a torsion pendulum would vary under the disturbances of environmental noise factors. In order to subtract the period of the pendulum from external influence, we employ the correlation method to determine the period with a high precision. Theoretical analysis shows that the relative precision is improved to be proportional to 1/m^3/2 with the number of the period m, compared with the conventional statistical mean that is proportional to 1/m^1/2, which is significant for the determination of gravitational constant with the swing time method.展开更多
Wave motions around different types of submerged structures are investigated by a numerical method, theboundary fitted coordinate method. The types of submerged structures include a submerged horizontal plate, submerg...Wave motions around different types of submerged structures are investigated by a numerical method, theboundary fitted coordinate method. The types of submerged structures include a submerged horizontal plate, submerged breakwaters (rectangular and trapezoidal) and a step-type structure (topography) . Water level fluctuations, wave height distributions, velocity fields and wave energies around submerged structures are studied comprehensively.展开更多
In this research work, the upward transition probabilities for the transition levels, 0<sup>+</sup> → 2<sup>+</sup>, 2<sup>+</sup> → 4<sup>+</sup>, 4<sup>+</s...In this research work, the upward transition probabilities for the transition levels, 0<sup>+</sup> → 2<sup>+</sup>, 2<sup>+</sup> → 4<sup>+</sup>, 4<sup>+</sup> → 6<sup>+</sup> and 6<sup>+</sup> → 8<sup>+</sup> levels of even-even neutron rich <sup>104-114</sup>Ru isotopes have been calculated by using the Global Best Fit (GBF) method. In addition, the associated parameters such as, Quadrupole moment and Deformation parameter of even-even <sup>104-114</sup>Ru have been calculated. The dependency of these nuclear parameters shows the nuclear magic number tendency.展开更多
In this paper,we construct and analyze a Crank-Nicolson fitted finite volume scheme for pricing European options under regime-switching Kou’s jumpdiffusion model which is governed by a system of partial integro-diffe...In this paper,we construct and analyze a Crank-Nicolson fitted finite volume scheme for pricing European options under regime-switching Kou’s jumpdiffusion model which is governed by a system of partial integro-differential equations(PIDEs).We show that this scheme is consistent,stable and monotone as the mesh sizes in space and time approach zero,hence it ensures the convergence to the solution of continuous problem.Finally,numerical experiments are performed to demonstrate the efficiency,accuracy and robustness of the proposed method.展开更多
Integrated energy system applications can significantly improve energy efficiency.In this paper,we establish an integrated energy system containing heat,electricity and gas.The existing power flow(PF)calculation metho...Integrated energy system applications can significantly improve energy efficiency.In this paper,we establish an integrated energy system containing heat,electricity and gas.The existing power flow(PF)calculation method applied to integrated energy systems(IESs)does not consider non-smooth constraints,such as the piecewise pipeline friction coefficient and generator buses reactive power limits,etc.Mixed integer nonlinear programming(MINLP)is conventionally used to deal with piecewise pipeline friction coefficients in gas network parts,but it is both complex and inefficient.Hence,we develop a piecewise linear function-based fitting method that can reduce the number of integer variables and enhanced the computational efficiency.In the electric network part,if the reactive power of the PV bus violates limits,it will be converted into a PQ bus,which is a non-differentiable and non-smooth constraint.Mixed complementarity problems are conventionally introduced to represent the PV-PQ buses type switching relationship and are addressed by the Newton-Raphson(NR)method.However,the above method is sensitive to the initial point.Here,we introduce a robust projected Levenberg-Marquardt(PLM)algorithm to cope with this issue.We demonstrate the advantages of our method and validate it both in a small-scale system and largescale network test cases.展开更多
文摘The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.
基金The project supported by Liu Hui Applied Mathematics Center of Nankai University and 985 Education Development Plan of Tianjin University
文摘We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.
基金Supported by the National Basic Research Program of China ("973"Program)(2006CB601201)~~
文摘In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images
文摘Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.
基金supported by grants funded by Department of Mechanical Engineering,Faculty of Engineering,Chiang Mai University and the Graduate School of Chiang Mai University.
文摘The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFB0501502,2016YFC1400903,2016YFB0500304)the National Natural Science Foundation of China(Nos.91638201,41276184,41325004,41471308,41571361)+1 种基金the High Resolution Earth Observation Systems of National Science and Technology Major Projects(No.41-Y20A31-9003-15/17)the Director Foundation of Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(No.Y6SJ2100CX)
文摘The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared(NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths(412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scatteringcorrection methods.
文摘The quality of the low frequency electromagnetic data is affected by the spike and the trend noises.Failure in removal of the spikes and the trends reduces the credibility of data explanation.Based on the analyses of the causes and characteristics of these noises,this paper presents the results of a preset statistics stacking method(PSSM)and a piecewise linear fitting method(PLFM)in de-noising the spikes and trends,respectively.The magnitudes of the spikes are either higher or lower than the normal values,which leads to distortion of the useful signal.Comparisons have been performed in removing of the spikes among the average,the statistics and the PSSM methods,and the results indicate that only the PSSM can remove the spikes successfully.On the other hand,the spectrums of the linear and nonlinear trends mainly lie in the low frequency band and can change the calculated resistivity significantly.No influence of the trends is observed when the frequency is higher than a certain threshold value.The PLSM can remove effectively both the linear and nonlinear trends with errors around 1% in the power spectrum.The proposed methods present an effective way for de-noising the spike and the trend noises in the low frequency electromagnetic data,and establish a research basis for de-noising the low frequency noises.
文摘A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materials with physical symmetry.The resultant computational software system has been also designed and first carried out in a microcomputer PANAFACOM-U1200 being on line with the X-ray diffractometer D/max-3A.The simu- lated calculation shows that the method is concisely pragmatic and easily popularized,while the results obtained are trust worthy.
基金the Science Technology Foundation of Ministry of Machine_ Buildin
文摘By the discussion of the formula and properties of (4,4) parametric form rational approximation to function exp(q), the fourth order derivative one_step exponentially fitted method and the third order derivative hybrid one_step exponentially fitted method are presented, their order p satisfying 6≤p≤8. The necessary and sufficient conditions for the two methods to be A_ stable are given. Finally, for the fourth order derivative method, the error bound and the necessary and sufficient conditions for it to be median are discussed.
文摘We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rules, exponential basis functions and remainder terms in integral form. We show that this method is the first order convergent in the discrete maximum norm for original problem (independent of the perturbation parameter ε). To illustrate the theoretical results, we solve test problem and we also give the error distributions in the solution in Table 1 and Figures 1-3.
基金supported by the National Natural Science Foundation of China (Grant Nos. 62075109, 62135011, 62075107, and 61935006)K. C. Wong Magna Fund in Ningbo University。
文摘Antimony selenide(Sb2Se3) films are widely used in phase change memory and solar cells due to their stable switching effect and excellent photovoltaic properties. These properties of the films are affected by the film thickness. A method combining the advantages of Levenberg–Marquardt method and spectral fitting method(LM–SFM) is presented to study the dependence of refractive index(RI), absorption coefficient, optical band gap, Wemple–Di Domenico parameters, dielectric constant and optical electronegativity of the Sb2Se3films on their thickness. The results show that the RI and absorption coefficient of the Sb2Se3films increase with the increase of film thickness, while the optical band gap decreases with the increase of film thickness. Finally, the reasons why the optical and electrical properties of the film change with its thickness are explained by x-ray diffractometer(XRD), energy dispersive x-ray spectrometer(EDS), Mott–Davis state density model and Raman microstructure analysis.
基金funded by the Natural Science Foundation Committee,China(41364001,41371435)
文摘The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.
基金Supported by National Natural Science Foundation of China(Grant No.51276125)National Key Basic Research Development Program of China(973 Program,Grant No.2012CB720101)
文摘In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the leakage flow rate can be obtained by finite element method, computational fluid dynamics method and experimental measurement method. However, it will take much time to carry out the above measurements and calculations. In this paper, the approximate model of parallel grooves based on the narrow groove theory is used to establish the dynamic equations of the gas film for the purpose of obtaining the dynamic parameters of gas film. The nonlinear differential equations of gas film model are solved by Runge-Kutta method and shooting method. The numerical values of the pressure profiles, leakage flux and opening force on the seal surface are integrated, and then compared to experimental data for the reliability of the numerical simulation. The results show that the numerical simulation curves are in good agreement with experimental values. Furthermore, the opening force and the leakage flux are proved to be strongly correlated with the operating parameters. Then, the function-coupling method is introduced to analyze the numerical results to obtain the correlation formulae of the opening force and leakage flux respectively with the operating parameters, i.e., the inlet pressure and the rotating speed. This study intends to provide an effective way to predict the aerodynamic performance for designing and optimizing the groove styles in dry gas seal rapidly and accurately.
基金supported by the National Natural Science Foundation of China(41304060)the national key basic research and development plan(2013CB733304)
文摘North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change rate(GCR) using the polynomial fitting method. In general, the study area was divided into the Shanxi rift, Jing-Jin-Ji(Beijing-Tianjin-Hebei Province), and Bohai Bay Basin(BBB) regions. Results of the distribution of the GCR determined from ground-based gravimetry show that the GCR appears to be "negativepositive-negative" from west to east, which indicates that different geophysical mechanisms are involved in the tectonic activities of these regions. However, GRACE solutions are conducted over a larger spatial scale and are able to show a difference between southern and northern areas and a mass redistribution of land water storage.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11174117 and 10974078)
文摘A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.
基金Supported by the National Key Basic Research and Development Programme of China under Grant No 2003CB716300, and the National Natural Science Foundation of China under Grant No 10121503.
文摘The period of a torsion pendulum would vary under the disturbances of environmental noise factors. In order to subtract the period of the pendulum from external influence, we employ the correlation method to determine the period with a high precision. Theoretical analysis shows that the relative precision is improved to be proportional to 1/m^3/2 with the number of the period m, compared with the conventional statistical mean that is proportional to 1/m^1/2, which is significant for the determination of gravitational constant with the swing time method.
文摘Wave motions around different types of submerged structures are investigated by a numerical method, theboundary fitted coordinate method. The types of submerged structures include a submerged horizontal plate, submerged breakwaters (rectangular and trapezoidal) and a step-type structure (topography) . Water level fluctuations, wave height distributions, velocity fields and wave energies around submerged structures are studied comprehensively.
文摘In this research work, the upward transition probabilities for the transition levels, 0<sup>+</sup> → 2<sup>+</sup>, 2<sup>+</sup> → 4<sup>+</sup>, 4<sup>+</sup> → 6<sup>+</sup> and 6<sup>+</sup> → 8<sup>+</sup> levels of even-even neutron rich <sup>104-114</sup>Ru isotopes have been calculated by using the Global Best Fit (GBF) method. In addition, the associated parameters such as, Quadrupole moment and Deformation parameter of even-even <sup>104-114</sup>Ru have been calculated. The dependency of these nuclear parameters shows the nuclear magic number tendency.
基金supported by the National Natural Science Foundation of China(Nos.11971354,and 11701221)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities’Association(No.2019FH001-079)the Fundamental Research Funds for the Central Universities(No.22120210555).
文摘In this paper,we construct and analyze a Crank-Nicolson fitted finite volume scheme for pricing European options under regime-switching Kou’s jumpdiffusion model which is governed by a system of partial integro-differential equations(PIDEs).We show that this scheme is consistent,stable and monotone as the mesh sizes in space and time approach zero,hence it ensures the convergence to the solution of continuous problem.Finally,numerical experiments are performed to demonstrate the efficiency,accuracy and robustness of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant No.51707196.
文摘Integrated energy system applications can significantly improve energy efficiency.In this paper,we establish an integrated energy system containing heat,electricity and gas.The existing power flow(PF)calculation method applied to integrated energy systems(IESs)does not consider non-smooth constraints,such as the piecewise pipeline friction coefficient and generator buses reactive power limits,etc.Mixed integer nonlinear programming(MINLP)is conventionally used to deal with piecewise pipeline friction coefficients in gas network parts,but it is both complex and inefficient.Hence,we develop a piecewise linear function-based fitting method that can reduce the number of integer variables and enhanced the computational efficiency.In the electric network part,if the reactive power of the PV bus violates limits,it will be converted into a PQ bus,which is a non-differentiable and non-smooth constraint.Mixed complementarity problems are conventionally introduced to represent the PV-PQ buses type switching relationship and are addressed by the Newton-Raphson(NR)method.However,the above method is sensitive to the initial point.Here,we introduce a robust projected Levenberg-Marquardt(PLM)algorithm to cope with this issue.We demonstrate the advantages of our method and validate it both in a small-scale system and largescale network test cases.