X-ray diffraction (XRD) peaks in a low-angle diffraction section of clayminerals, especially those of authigenic origin, have broadening and tailing features in shape.Using the five basic parameters, peak position, pe...X-ray diffraction (XRD) peaks in a low-angle diffraction section of clayminerals, especially those of authigenic origin, have broadening and tailing features in shape.Using the five basic parameters, peak position, peak height, width, shape coefficient and asymmetry,to describe an XRD peak is more accurate, comprehensive and integrated than using only 3 of them,position, height and width. Following the concept of the five basic parameters of an XRD peak, theprogram Decoform proposed in this study provides more information in mineralogical analyses byfitting actual XRD profiles. In combination with the HW-IR plot, Decoform can he systematically andaccurately used in the comprehensive analyses of crystallinity, domain size, lattice strain andquantitative phase. It is also of value for the geological investigations of diagenesis,metamorphism, basin maturity, structural stress field and so on.展开更多
The effective recycling of waste printed circuit boards(WPCBs)can conserve resources and reduce environmental pollution.This study explores the pyrolysis and combustion characteristics of WPCBs in various atmospheres ...The effective recycling of waste printed circuit boards(WPCBs)can conserve resources and reduce environmental pollution.This study explores the pyrolysis and combustion characteristics of WPCBs in various atmospheres through thermogravimetric and Gaussian fitting analyses.Furthermore,this study analyses the pyrolysis products and combustion processes of WPCBs through thermogravimetric and Fourier transform infrared analyses(TG-FTIR)and thermogravimetry-mass spectrometry(TG-MS).Results show that the pyrolysis and combustion processes of WPCBs do not constitute a single reaction,but rather an overlap of multiple reactions.The pyrolysis and combustion process of WPCBs is divided into multiple reactions by Gaussian peak fitting.The kinetic parameters of each reaction are obtained by the Coats-Redfern method.In an argon atmosphere,pyrolysis consists of the overlap of the preliminary pyrolysis of epoxy resin,pyrolysis of small organic molecules,and pyrolysis of brominated flame retardants.The thermal decomposition process in the O_(2) atmosphere is mainly divided into two reactions:brominated flame retardant combustion and epoxy combustion.This study provided the theoretical basis for pollution control,process optimization,and reactor design of WPCBs pyrolysis.展开更多
With the development of Laser Induced Breakdown Spectroscopy (LIBS), increasing numbers of researchers have begun to focus on problems of the application. We are not just satisfied with analyzing what kinds of eleme...With the development of Laser Induced Breakdown Spectroscopy (LIBS), increasing numbers of researchers have begun to focus on problems of the application. We are not just satisfied with analyzing what kinds of elements are in the samples but are also eager to accomplish quantitative detection with LIBS. There are several means to improve the limit of detection and stability, which are important to quantitative detection, especially of trace elements, increasing the laser energy and the resolution of spectrometer, using dual pulse setup, vacuuming the ablation environment etc. All of these methods are about to update the hardware system, which is effective but expensive. So we establish the following spectrum data processing methods to improve the trace elements analysis in this paper: spectrum sifting, noise filtering, and peak fitting. There are small algorithms in these three method groups, which we will introduce in detail. Finally, we discuss how these methods affect the results of trace elements detection in an experiment to analyze the lead content in Chinese cabbage.展开更多
High performance size exclusion chromatography (HPSEC) is used in water quality research primarily to determine the molecular weight distribution of the dissolved organic matter (DOM), but by applying peak fitting...High performance size exclusion chromatography (HPSEC) is used in water quality research primarily to determine the molecular weight distribution of the dissolved organic matter (DOM), but by applying peak fitting to the chromatogram, this technique can also be used as a tool to model and predict DOM removal. Six low specific UV absorbance (SUVA) source waters were treated using coagulation with alum and both the source and treated water samples were analysed using HPSEC. By comparing the molecular weight profiles of the source and treated waters, it was established that several DOM components were not effectively removed by alum coagulation even after high dosage alum treatment. A peak-fitting technique was applied based on the concept of linking the character (molecular weight profile) of the recalcitrant organics in the treated water with those of the source water. This was then applied to predict DOM treatability by determining the areas of the peaks which were assigned to removable organics from the source water molecular weight profile after peak fitting, and this technique quantified the removable and non-removable organics. The prediction was compared with the actual dissolved organic carbon (DOC) removal determined from jar testing and showed good agreement, with variance between 2% and 10%. This confirmed that this prediction approach, which was originally developed for high SUVA waters, can also be applied successfully to predict DOC removal in low SUVA waters.展开更多
The catalytic performance of Pt-based catalysts depends sensitively on their d-band centers.Nevertheless,there are still huge challenges to evaluate their d-band centers from experimental technologies,and modulate the...The catalytic performance of Pt-based catalysts depends sensitively on their d-band centers.Nevertheless,there are still huge challenges to evaluate their d-band centers from experimental technologies,and modulate them to analyze their selectivity in ethanol oxidation reaction(EOR).Here,Pt1Au1alloy supported on the commercial carbon material(Pt_(1)Au_(1)/C)is employed as a typical example to investigate its d-band center shift of surface Pt,and as electrocatalysts to study its selectivity towards EOR.Significantly,a highly reliable in situ Fourier-transform infrared spectroscopy CO-probe strategy is developed to characterize the d-band center shift of surface Pt.The modified electronic effect and site effect of Pt_(1)Au_(1)/C dictated the adsorption configuration of intermediate species and the OH species coverage,thereby influencing its selectivity.More importantly,we developed a universal cyclic voltammetry peak differentiation fitting method as an electrochemical analysis technique to investigate CO_(2)selectivity,which is potentially extendable to other Pt-based electrocatalysts.展开更多
基金the National Natural Science Foundation of China (Grant No.49872033) the special pre-research project of the Basic Scientific Program.the Ministry of Science and Technology of China (Grant No. 2001CCA02400).
文摘X-ray diffraction (XRD) peaks in a low-angle diffraction section of clayminerals, especially those of authigenic origin, have broadening and tailing features in shape.Using the five basic parameters, peak position, peak height, width, shape coefficient and asymmetry,to describe an XRD peak is more accurate, comprehensive and integrated than using only 3 of them,position, height and width. Following the concept of the five basic parameters of an XRD peak, theprogram Decoform proposed in this study provides more information in mineralogical analyses byfitting actual XRD profiles. In combination with the HW-IR plot, Decoform can he systematically andaccurately used in the comprehensive analyses of crystallinity, domain size, lattice strain andquantitative phase. It is also of value for the geological investigations of diagenesis,metamorphism, basin maturity, structural stress field and so on.
基金financially supported by the National Key R&D Program of China(Nos.2019YFC1908400 and 2019YFC1907405)the National Natural Science Foundation of China(Nos.51904124,51804139,52004111 and 52074136)+2 种基金the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(Nos.20212BCJL23052 and 20212BCJ23007)the Distinguished Professor Program of Jinggang Scholars,China Institutions of Higher Learning Jiangxi Province,the Science and Technology Research Project of the Jiangxi Provincial Department of Education(No.gjj170507)the Science Research Foundation of Jiangxi University of Science and Technology(No.jxxjbs 17046)。
文摘The effective recycling of waste printed circuit boards(WPCBs)can conserve resources and reduce environmental pollution.This study explores the pyrolysis and combustion characteristics of WPCBs in various atmospheres through thermogravimetric and Gaussian fitting analyses.Furthermore,this study analyses the pyrolysis products and combustion processes of WPCBs through thermogravimetric and Fourier transform infrared analyses(TG-FTIR)and thermogravimetry-mass spectrometry(TG-MS).Results show that the pyrolysis and combustion processes of WPCBs do not constitute a single reaction,but rather an overlap of multiple reactions.The pyrolysis and combustion process of WPCBs is divided into multiple reactions by Gaussian peak fitting.The kinetic parameters of each reaction are obtained by the Coats-Redfern method.In an argon atmosphere,pyrolysis consists of the overlap of the preliminary pyrolysis of epoxy resin,pyrolysis of small organic molecules,and pyrolysis of brominated flame retardants.The thermal decomposition process in the O_(2) atmosphere is mainly divided into two reactions:brominated flame retardant combustion and epoxy combustion.This study provided the theoretical basis for pollution control,process optimization,and reactor design of WPCBs pyrolysis.
基金supported by National High-Tech R&D Program(863 Program),China(No.2013AA102402)
文摘With the development of Laser Induced Breakdown Spectroscopy (LIBS), increasing numbers of researchers have begun to focus on problems of the application. We are not just satisfied with analyzing what kinds of elements are in the samples but are also eager to accomplish quantitative detection with LIBS. There are several means to improve the limit of detection and stability, which are important to quantitative detection, especially of trace elements, increasing the laser energy and the resolution of spectrometer, using dual pulse setup, vacuuming the ablation environment etc. All of these methods are about to update the hardware system, which is effective but expensive. So we establish the following spectrum data processing methods to improve the trace elements analysis in this paper: spectrum sifting, noise filtering, and peak fitting. There are small algorithms in these three method groups, which we will introduce in detail. Finally, we discuss how these methods affect the results of trace elements detection in an experiment to analyze the lead content in Chinese cabbage.
基金supported by the National Natural Science Foundation of China (No. 51025830)the National Basic Research Program of (973) China (No.2011CB933700)+1 种基金the South Australian Premier’s Science and Research Fund Project "Development of materials engineering solutions for treatment of Murray-Darling Basin sourced water supplies"supported by the special fund from the State Key Laboratory of Environmental Aquatic Chemistry, Project 08K08ESPCR
文摘High performance size exclusion chromatography (HPSEC) is used in water quality research primarily to determine the molecular weight distribution of the dissolved organic matter (DOM), but by applying peak fitting to the chromatogram, this technique can also be used as a tool to model and predict DOM removal. Six low specific UV absorbance (SUVA) source waters were treated using coagulation with alum and both the source and treated water samples were analysed using HPSEC. By comparing the molecular weight profiles of the source and treated waters, it was established that several DOM components were not effectively removed by alum coagulation even after high dosage alum treatment. A peak-fitting technique was applied based on the concept of linking the character (molecular weight profile) of the recalcitrant organics in the treated water with those of the source water. This was then applied to predict DOM treatability by determining the areas of the peaks which were assigned to removable organics from the source water molecular weight profile after peak fitting, and this technique quantified the removable and non-removable organics. The prediction was compared with the actual dissolved organic carbon (DOC) removal determined from jar testing and showed good agreement, with variance between 2% and 10%. This confirmed that this prediction approach, which was originally developed for high SUVA waters, can also be applied successfully to predict DOC removal in low SUVA waters.
基金granted by the National Natural Science Foundation of China(22172134,22288102,22279011)Fundamental Research Funds for the Central Universities(2022CDJXY-003)。
文摘The catalytic performance of Pt-based catalysts depends sensitively on their d-band centers.Nevertheless,there are still huge challenges to evaluate their d-band centers from experimental technologies,and modulate them to analyze their selectivity in ethanol oxidation reaction(EOR).Here,Pt1Au1alloy supported on the commercial carbon material(Pt_(1)Au_(1)/C)is employed as a typical example to investigate its d-band center shift of surface Pt,and as electrocatalysts to study its selectivity towards EOR.Significantly,a highly reliable in situ Fourier-transform infrared spectroscopy CO-probe strategy is developed to characterize the d-band center shift of surface Pt.The modified electronic effect and site effect of Pt_(1)Au_(1)/C dictated the adsorption configuration of intermediate species and the OH species coverage,thereby influencing its selectivity.More importantly,we developed a universal cyclic voltammetry peak differentiation fitting method as an electrochemical analysis technique to investigate CO_(2)selectivity,which is potentially extendable to other Pt-based electrocatalysts.