Climate change vulnerability assessment is an essential tool for identifying regions that are most susceptible to the impacts of climate change and designing effective adaptation actions that can reduce vulnerability ...Climate change vulnerability assessment is an essential tool for identifying regions that are most susceptible to the impacts of climate change and designing effective adaptation actions that can reduce vulnerability and enhance long-term resilience of these regions.This study explored a framework for climate change vulnerability assessment in the new urban planning process in Jangwani Ward,Tanzania.Specifically,taking flood as an example,this study highlighted the steps and methods for climate change vulnerability assessment in the new urban planning process.In the study area,95 households were selected and interviewed through purposeful sampling.Additionally,10 respondents(4 females and 6 males)were interviewed for Focus Group Discussion(FGD),and 3 respondents(1 female and 2 males)were selected for Key Informant Interviews(KII)at the Ministry of Lands,Housing and Human Settlements Development.This study indicated that climate change vulnerability assessment framework involves the assessment of climatic hazards,risk elements,and adaptive capacity,and the determination of vulnerability levels.The average hazard risk rating of flood was 2.3.Socioeconomic and livelihood activities and physical infrastructures both had the average risk element rating of 3.0,and ecosystems had the average risk element rating of 2.9.Adaptive capacity ratings of knowledge,technology,economy or finance,and institution were 1.6,1.9,1.4,and 2.2,respectively.The vulnerability levels of socioeconomic and livelihood activities and physical infrastructure were very high(4.0).Ecosystems had a high vulnerability level(3.8)to flood.The very high vulnerability level of socioeconomic and livelihood activities was driven by high exposure and sensitivity to risk elements and low adaptive capacity.The study recommends adoption of the new urban planning process including preparation,planning,implementation,and monitoring-evaluation-review phases that integrates climate change vulnerability assessment in all phases.展开更多
The age,grain size compositions and major elemental compositions for sediments in core YQ1 from the Yingqiong continental slope in the South China Sea was determined in this paper.It is noted that the periodically cyc...The age,grain size compositions and major elemental compositions for sediments in core YQ1 from the Yingqiong continental slope in the South China Sea was determined in this paper.It is noted that the periodically cyclic change of sedimentation rates occurred in the Yingqiong continental slope in the South China Sea.During the interglacial periods,the sedimentation rates were high,while the sedimentation rates exhibited low values during the glacial periods.During Marine Isotope Stage 1(MIS1),the sedimentary rate could reach about 800 cm kyr-1 and during the MIS6 this area is characterized by the lowest sedimentary rate,which is lower than 3 cm kyr-1.According to the R-mode factor analysis of the major element data,three factors F1(Al2O3,Fe2O3,TiO2 and K2O),F2(MgO and MnO)and F3(Na2O and P2O5)were obtained,which shows that vertical change of the major elemental concentrations in the core was mainly controlled by the nearby terrestrial inputs and the early diagenesis,while the effect of volcanic and biogenous inputs was less.The obvious glacial-interglacial cyclic features are presented in the changes of the typical terrestrial element ratios contained in factor F1,which reflects the impact of glacial-interglacial climatic cycle on the evolution of the East Asian monsoon.This indicates that the major element ratios in terrestrial sediments are significant indicators of regional climate changes.展开更多
This paper deals with a new integrated method of reconstruction and forecasting of climatic changes in future. The method is based on proxy data pollen-spore analysis method, 14C analysis method, nowadays meteorologic...This paper deals with a new integrated method of reconstruction and forecasting of climatic changes in future. The method is based on proxy data pollen-spore analysis method, 14C analysis method, nowadays meteorological data, and data about of solar activity expressed in numbers of W (Wolf). Here we present the results of investigation of sediments of the 2nd Fomich River terrace, Taymyr Peninsula, Russia. The formation of the peat bog started 10500 ± 140 years BP and continued during the entire Holocene. The pollen analysis of the sediment samples of the 2nd Fomich River terrace and the analysis of surface samples from a larch forest, typical of this region, reveals two phytochrones: both climatically preconditioned--tundra phytochrone (I1-4) and forest phytochrone (Ⅱ1-4). The techniques of reconstruction and forecasting of basic elements of climate are presented and discussed in details.展开更多
Element geochemistry of lake sediments has been widely used to detect climate change because element composition and ratios can reflect the weathering degree in the source area. Given the element composition of lake s...Element geochemistry of lake sediments has been widely used to detect climate change because element composition and ratios can reflect the weathering degree in the source area. Given the element composition of lake sediments from Gulug Co Lake, Hoh Xil, Qinghai-Xizang Plateau, chemical index of alteration (CIA), index of composition variability (ICV) and other element ratios have been used to establish the weathering sequence of this area since 1820 AD. The weathering is so weak that the element composition change is more sensitive to climate change and autochthonous processes. From 1820 to 1984 AD, there were two drier periods with a wetter interval from 1870 to 1945 AD. After 1984 the weather showed a tendency of becoming wet.展开更多
以黄河源区白河流域为研究对象,采用Mann-Kendall方法分析水文要素的演变特征,利用RCCC-WBM水量平衡模型(monthly water balance model developed by research center for climate change)模拟探究流域生态水文要素对气候变化的敏感性...以黄河源区白河流域为研究对象,采用Mann-Kendall方法分析水文要素的演变特征,利用RCCC-WBM水量平衡模型(monthly water balance model developed by research center for climate change)模拟探究流域生态水文要素对气候变化的敏感性。结果表明:1981-2020年白河流域气温增加趋势显著,气温递升率为0.45℃/(10 a),潜在蒸散发年际变化不明显,而降水和径流呈现先减少后增加的阶段性变化特征;RCCC-WBM水量平衡模型对白河流域具有较好的月尺度径流模拟效果,率定期和验证期的纳什效率系数(Nash-Sutcliffe efficiency coefficient,ENS)分别为0.69和0.62;在假定的气候变化情景下,降水量增加40%且气温变化-4~4℃时对应的径流量变化范围为20.2%~84.4%,实际蒸散发量为1.4%~51.0%,即随着降水量的增多,流域气温和蒸散发变化对径流的影响越来越显著。研究结果可为黄河源区的水循环演变规律的揭示提供参考。展开更多
Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafros...Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafrost embankment design in frozen ground regions. The prediction may be further complicated due to the inherent uncertainties of material properties. Hence, stochastic analyses should be conducted. Firstly, Karhunen-Loeve expansion is applied to attain the random fields for hydraulic and thermal conductions. Next, the mixed-form modified Richards equation for mass transfer (i.e., mass equation) and the heat transport equation for heat transient flow in a variably saturated frozen soil are combined into one equation with temperature unknown. Furthermore, the finite element formulation for the coupled thermal-hydraulic fields is derived. Based on the random fields, the stochastic finite element analyses on stability of embankment are carried out. Numerical results show that stochastic analyses of embankment stability may provide a more rational picture for the distribution of factors of safety (FOS), which is definitely useful for embankment design in frozen ground regions.展开更多
As the largest inland lake of China, along with its unique landscape and geographical location, Qinghai Lake has got much atten- tion of the scientists for a long time. The precursors have done substantive researches ...As the largest inland lake of China, along with its unique landscape and geographical location, Qinghai Lake has got much atten- tion of the scientists for a long time. The precursors have done substantive researches by using the lake sediment, which deepen our tmderstanding of the climate changes in this region. Although sand dunes and loess sediment are widely distributed around the lake, so far the researches on geochemical elements from aeolian sediment have been less reported. In this paper, we selected a typical aeolian profile on the east of Qinghai Lake. Based on systematic sampling and analysis of seven major geochemical ele- ments, combined with OSL dating and previous researches, this paper discusses climate changes in the Qinghai Lake area since 12.5 ka B.P.. Our conclusions are: (1) Before 12.5 ka B.P., the climate in this region was dry, cold, and accompanied by strong wind-sand activities. (2) During 12.5-11.9 ka B.P., the climate became warm and wet. However, there was an abrupt climate cooling event during 12.2-11.9 ka B.P., which likely corresponded to the Younger Dryas event. (3) During 11.9 8.0 ka B.P., the climate fluctuated greatly and frequently from warm to cold, and three cooling events occurred. (4) During 8.0-2.6 ka B.P., the climate was warm and humid. (5) Since 2.6 ka B.P., similar to the modem climate, the climate was mainly dry and cold.展开更多
Paleo-sedimentary environment of Chang 7 Member of Upper Triassic Yanchang Formation in Ordos Basin, including the paleoclimate, paleo-salinity and paleo-redox conditions were restored through geochemical elements ana...Paleo-sedimentary environment of Chang 7 Member of Upper Triassic Yanchang Formation in Ordos Basin, including the paleoclimate, paleo-salinity and paleo-redox conditions were restored through geochemical elements analysis of 289 samples collected from the outcrop sections around and wells drilled in the basin and using a series of identification indexes of paleo-climate, paleo-salinity and paleo-redox conditions, such as CaO/MgO?Al2 O3, Sr/Cu, Rb/Sr, Rb/K2 O, Th/U, V/(V+Ni), the content of element B tested from the mudstone. Comprehensive analysis shows that in sedimentary period of the Chang 7, the paleo-climate was warm temperate to subtropical climate with temperature higher than 15 ?C, the water body was continental brackish water to freshwater, and the sediments were deposited under strong reduction conditions. Suitable temperature, extensively deep lake basin and strongly reductive paleo-sedimentary environment led to the blooming, enrichment and preservation of organic matter in the submember Chang 73. As a result, a set of high-quality source rock was formed, laying material foundation for large-scale accumulation of shale oil.展开更多
In semi-arid and arid desert regions of northern China, aeolian deposits document the framework variation of an Asian monsoon during the late Quaternary. However, there is still a lack of detailed data pertaining to H...In semi-arid and arid desert regions of northern China, aeolian deposits document the framework variation of an Asian monsoon during the late Quaternary. However, there is still a lack of detailed data pertaining to Holocene Asian monsoonal variation especial in the modern Asian summer monsoonal boundary belt. In this study, we reconstructed Holocene millennial-scale climatic changes in the Mu Us Desert, northern China, through systematic analysis of the variation of trace elements(324 samples) in different lithological units of the palaeosol-aeolian sand deposit, in combination with14 C and OSL chronology. Statistical results, correlation and clustering analysis indicate that the high content of 11 trace elements(V, Y, Cr, Nb, P, Mn, Cu, Zr, As, Ni and Rb, represented by P) and lower Sr content corresponding to periods of palaeosol development, marked increase of vegetation, weathering degree, and enhanced Asian summer monsoonal strength. In contrast, their opposed variation are coincident with accumulated aeolian sand layers, implying weaker summer monsoons and less geochemical weathering and degraded vegetation. These associations can be considered as signaling regional humid and dry changes of the Holocene environment. Accordingly, relatively arid conditions dominated the region before 7.2 ka, and there was an optimal humid climate in 7.2-4.6 ka. Afterwards, the climate became obviously dry, accompanied with several cycles of relatively wet and dry, such as relatively wet intervals around 4.1-3.7 ka, 3.5-3.3 ka and 2.5 ka. In addition, six millennial-scale dry events were recorded, and these events were consistent with weaker Asian summer monsoonal intervals in low latitudes, declined palaeosol development and precipitation in middle latitudes, as well as increased winter monsoon and periodic ice-rafting events in high latitudes of the Northern Hemisphere, within limits of accuracy of existing dating ages. This possibly suggests a noteworthy synchronism between millennial-scale climatic changes in this region and on a global scale.展开更多
文摘Climate change vulnerability assessment is an essential tool for identifying regions that are most susceptible to the impacts of climate change and designing effective adaptation actions that can reduce vulnerability and enhance long-term resilience of these regions.This study explored a framework for climate change vulnerability assessment in the new urban planning process in Jangwani Ward,Tanzania.Specifically,taking flood as an example,this study highlighted the steps and methods for climate change vulnerability assessment in the new urban planning process.In the study area,95 households were selected and interviewed through purposeful sampling.Additionally,10 respondents(4 females and 6 males)were interviewed for Focus Group Discussion(FGD),and 3 respondents(1 female and 2 males)were selected for Key Informant Interviews(KII)at the Ministry of Lands,Housing and Human Settlements Development.This study indicated that climate change vulnerability assessment framework involves the assessment of climatic hazards,risk elements,and adaptive capacity,and the determination of vulnerability levels.The average hazard risk rating of flood was 2.3.Socioeconomic and livelihood activities and physical infrastructures both had the average risk element rating of 3.0,and ecosystems had the average risk element rating of 2.9.Adaptive capacity ratings of knowledge,technology,economy or finance,and institution were 1.6,1.9,1.4,and 2.2,respectively.The vulnerability levels of socioeconomic and livelihood activities and physical infrastructure were very high(4.0).Ecosystems had a high vulnerability level(3.8)to flood.The very high vulnerability level of socioeconomic and livelihood activities was driven by high exposure and sensitivity to risk elements and low adaptive capacity.The study recommends adoption of the new urban planning process including preparation,planning,implementation,and monitoring-evaluation-review phases that integrates climate change vulnerability assessment in all phases.
基金financially supported by the National Key Research and Development Program of China (No. 2017 YFC0306703)the National Natural Science Foundation of China (No. 41706065)
文摘The age,grain size compositions and major elemental compositions for sediments in core YQ1 from the Yingqiong continental slope in the South China Sea was determined in this paper.It is noted that the periodically cyclic change of sedimentation rates occurred in the Yingqiong continental slope in the South China Sea.During the interglacial periods,the sedimentation rates were high,while the sedimentation rates exhibited low values during the glacial periods.During Marine Isotope Stage 1(MIS1),the sedimentary rate could reach about 800 cm kyr-1 and during the MIS6 this area is characterized by the lowest sedimentary rate,which is lower than 3 cm kyr-1.According to the R-mode factor analysis of the major element data,three factors F1(Al2O3,Fe2O3,TiO2 and K2O),F2(MgO and MnO)and F3(Na2O and P2O5)were obtained,which shows that vertical change of the major elemental concentrations in the core was mainly controlled by the nearby terrestrial inputs and the early diagenesis,while the effect of volcanic and biogenous inputs was less.The obvious glacial-interglacial cyclic features are presented in the changes of the typical terrestrial element ratios contained in factor F1,which reflects the impact of glacial-interglacial climatic cycle on the evolution of the East Asian monsoon.This indicates that the major element ratios in terrestrial sediments are significant indicators of regional climate changes.
文摘This paper deals with a new integrated method of reconstruction and forecasting of climatic changes in future. The method is based on proxy data pollen-spore analysis method, 14C analysis method, nowadays meteorological data, and data about of solar activity expressed in numbers of W (Wolf). Here we present the results of investigation of sediments of the 2nd Fomich River terrace, Taymyr Peninsula, Russia. The formation of the peat bog started 10500 ± 140 years BP and continued during the entire Holocene. The pollen analysis of the sediment samples of the 2nd Fomich River terrace and the analysis of surface samples from a larch forest, typical of this region, reveals two phytochrones: both climatically preconditioned--tundra phytochrone (I1-4) and forest phytochrone (Ⅱ1-4). The techniques of reconstruction and forecasting of basic elements of climate are presented and discussed in details.
文摘Element geochemistry of lake sediments has been widely used to detect climate change because element composition and ratios can reflect the weathering degree in the source area. Given the element composition of lake sediments from Gulug Co Lake, Hoh Xil, Qinghai-Xizang Plateau, chemical index of alteration (CIA), index of composition variability (ICV) and other element ratios have been used to establish the weathering sequence of this area since 1820 AD. The weathering is so weak that the element composition change is more sensitive to climate change and autochthonous processes. From 1820 to 1984 AD, there were two drier periods with a wetter interval from 1870 to 1945 AD. After 1984 the weather showed a tendency of becoming wet.
文摘以黄河源区白河流域为研究对象,采用Mann-Kendall方法分析水文要素的演变特征,利用RCCC-WBM水量平衡模型(monthly water balance model developed by research center for climate change)模拟探究流域生态水文要素对气候变化的敏感性。结果表明:1981-2020年白河流域气温增加趋势显著,气温递升率为0.45℃/(10 a),潜在蒸散发年际变化不明显,而降水和径流呈现先减少后增加的阶段性变化特征;RCCC-WBM水量平衡模型对白河流域具有较好的月尺度径流模拟效果,率定期和验证期的纳什效率系数(Nash-Sutcliffe efficiency coefficient,ENS)分别为0.69和0.62;在假定的气候变化情景下,降水量增加40%且气温变化-4~4℃时对应的径流量变化范围为20.2%~84.4%,实际蒸散发量为1.4%~51.0%,即随着降水量的增多,流域气温和蒸散发变化对径流的影响越来越显著。研究结果可为黄河源区的水循环演变规律的揭示提供参考。
基金supported by the National 973 Project of China (No. 2012CB026104)the National Natural Science Foundation of China (No. 51378057)
文摘Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafrost embankment design in frozen ground regions. The prediction may be further complicated due to the inherent uncertainties of material properties. Hence, stochastic analyses should be conducted. Firstly, Karhunen-Loeve expansion is applied to attain the random fields for hydraulic and thermal conductions. Next, the mixed-form modified Richards equation for mass transfer (i.e., mass equation) and the heat transport equation for heat transient flow in a variably saturated frozen soil are combined into one equation with temperature unknown. Furthermore, the finite element formulation for the coupled thermal-hydraulic fields is derived. Based on the random fields, the stochastic finite element analyses on stability of embankment are carried out. Numerical results show that stochastic analyses of embankment stability may provide a more rational picture for the distribution of factors of safety (FOS), which is definitely useful for embankment design in frozen ground regions.
基金founded by the Nationally Natural Science Foundation of China (41171159)the National Key Basic Research Program of China (2013CB956001)the Fundamental Research Funds for the Central Universities
文摘As the largest inland lake of China, along with its unique landscape and geographical location, Qinghai Lake has got much atten- tion of the scientists for a long time. The precursors have done substantive researches by using the lake sediment, which deepen our tmderstanding of the climate changes in this region. Although sand dunes and loess sediment are widely distributed around the lake, so far the researches on geochemical elements from aeolian sediment have been less reported. In this paper, we selected a typical aeolian profile on the east of Qinghai Lake. Based on systematic sampling and analysis of seven major geochemical ele- ments, combined with OSL dating and previous researches, this paper discusses climate changes in the Qinghai Lake area since 12.5 ka B.P.. Our conclusions are: (1) Before 12.5 ka B.P., the climate in this region was dry, cold, and accompanied by strong wind-sand activities. (2) During 12.5-11.9 ka B.P., the climate became warm and wet. However, there was an abrupt climate cooling event during 12.2-11.9 ka B.P., which likely corresponded to the Younger Dryas event. (3) During 11.9 8.0 ka B.P., the climate fluctuated greatly and frequently from warm to cold, and three cooling events occurred. (4) During 8.0-2.6 ka B.P., the climate was warm and humid. (5) Since 2.6 ka B.P., similar to the modem climate, the climate was mainly dry and cold.
基金Supported by the National Key Basic Research and Development Program(973 Project)National Science and Technology Major Project(2016ZX05050,2017ZX05001002)
文摘Paleo-sedimentary environment of Chang 7 Member of Upper Triassic Yanchang Formation in Ordos Basin, including the paleoclimate, paleo-salinity and paleo-redox conditions were restored through geochemical elements analysis of 289 samples collected from the outcrop sections around and wells drilled in the basin and using a series of identification indexes of paleo-climate, paleo-salinity and paleo-redox conditions, such as CaO/MgO?Al2 O3, Sr/Cu, Rb/Sr, Rb/K2 O, Th/U, V/(V+Ni), the content of element B tested from the mudstone. Comprehensive analysis shows that in sedimentary period of the Chang 7, the paleo-climate was warm temperate to subtropical climate with temperature higher than 15 ?C, the water body was continental brackish water to freshwater, and the sediments were deposited under strong reduction conditions. Suitable temperature, extensively deep lake basin and strongly reductive paleo-sedimentary environment led to the blooming, enrichment and preservation of organic matter in the submember Chang 73. As a result, a set of high-quality source rock was formed, laying material foundation for large-scale accumulation of shale oil.
基金funded by the National Natural Science Foundation of China (Grant Nos. 41501220, 41671204)China Postdoctoral Science Foundation (Grant Nos. 2015M570861+2 种基金 2017T100783)Natural Science Foundation of Gansu Province, China (1506RJZA287)Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmen tal and Engineering Research Institute, CAS (KLDD2017-002)
文摘In semi-arid and arid desert regions of northern China, aeolian deposits document the framework variation of an Asian monsoon during the late Quaternary. However, there is still a lack of detailed data pertaining to Holocene Asian monsoonal variation especial in the modern Asian summer monsoonal boundary belt. In this study, we reconstructed Holocene millennial-scale climatic changes in the Mu Us Desert, northern China, through systematic analysis of the variation of trace elements(324 samples) in different lithological units of the palaeosol-aeolian sand deposit, in combination with14 C and OSL chronology. Statistical results, correlation and clustering analysis indicate that the high content of 11 trace elements(V, Y, Cr, Nb, P, Mn, Cu, Zr, As, Ni and Rb, represented by P) and lower Sr content corresponding to periods of palaeosol development, marked increase of vegetation, weathering degree, and enhanced Asian summer monsoonal strength. In contrast, their opposed variation are coincident with accumulated aeolian sand layers, implying weaker summer monsoons and less geochemical weathering and degraded vegetation. These associations can be considered as signaling regional humid and dry changes of the Holocene environment. Accordingly, relatively arid conditions dominated the region before 7.2 ka, and there was an optimal humid climate in 7.2-4.6 ka. Afterwards, the climate became obviously dry, accompanied with several cycles of relatively wet and dry, such as relatively wet intervals around 4.1-3.7 ka, 3.5-3.3 ka and 2.5 ka. In addition, six millennial-scale dry events were recorded, and these events were consistent with weaker Asian summer monsoonal intervals in low latitudes, declined palaeosol development and precipitation in middle latitudes, as well as increased winter monsoon and periodic ice-rafting events in high latitudes of the Northern Hemisphere, within limits of accuracy of existing dating ages. This possibly suggests a noteworthy synchronism between millennial-scale climatic changes in this region and on a global scale.