Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ...Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.展开更多
Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across various fields.Still,until now,mass fabrication has been impossible,leaving the material as some...Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across various fields.Still,until now,mass fabrication has been impossible,leaving the material as something of a laboratory curiosity rather than an industrial reality.But a team of researchers from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences has recently developed a novel exfoliation process–using chemical solutions to peel off thin layers from their parent compounds,creating atomically thin sheets–that looks set to finally deliver on the ultra-thin substance’s promise.展开更多
The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstruc...The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness.展开更多
The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usuall...The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usually exhibit particular preferred orientations and then alter the total texture feature of rolled sheets.Ca solid solution into Mg matrix serves to the formation of texture component with c-axis rotated away from normal direction towards transverse direction and then weakens the overall texture intensity,resulting in a similar anisotropic characteristic to RE-containing Mg alloys.展开更多
Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared...Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.展开更多
In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios ...In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.展开更多
The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the ...The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the hot pressing adhesive method. Then, the uniaxial tensile tests were conducted to investigate the mechanical properties of AA5052/polyethylene/ AA5052 sandwich sheets, and the stretching tests were carried out to investigate the influences of polymer core thickness on the limit dome height of the sandwich sheet. The forming limit curves for three kinds of sandwich sheets were obtained. The experimental results show that the forming limit of the AA5052/polyethylene/AA5052 sandwich sheet is higher than that of the monolithic AA5052 sheet, and it increases with increasing the thickness of polyethylene core.展开更多
The mechanical properties, microstructures, and fractographs of TA15 sheets vacuum-annealed under different patterns were investigated. The results indicate that vacuum annealing significantly improves the mechanical ...The mechanical properties, microstructures, and fractographs of TA15 sheets vacuum-annealed under different patterns were investigated. The results indicate that vacuum annealing significantly improves the mechanical properties of the sheets in comparison with those after ambient annealing. With increasing the annealing temperature, the phase boundaries and secondary a-phase increase, whereas the volume fraction of primary a-phase decreases, resulting in increased strength and decreased elongation A relatively fine secondary a-phase is obtained after double annealing. The desirable mechanical properties (i.e., ultimate tensile strength, yield strength, and elongation are 1070 MPa, 958 MPa, and 15%, respectively) are obtained through double annealing ((950 ℃/2 h, AC)+(600 ℃/2 h, AC)). The fractographs obtained after tensile tests show that the deepest and largest dimples are formed in the specimen annealed at 850 ℃, which indicates that the best plasticity is obtained at this annealing temperature.展开更多
In this paper, repeated unidirectional bending (RUB), was applied to improve the texture of AZ31B magnesium alloy sheets so as to enhance their stamping properties. The samples undergoing RUB were annealed at differ...In this paper, repeated unidirectional bending (RUB), was applied to improve the texture of AZ31B magnesium alloy sheets so as to enhance their stamping properties. The samples undergoing RUB were annealed at different temperatures. The mechanical properties, formability, textural components and microstructure of the samples before and after RUB were characterized and compared. It was found that the basal textural component was reduced dramatically by RUB, and that (1212) and (1211) textural components appeared. Annealing has a great effect on the mechanical properties of samples undergoing RUB. The plasticity and stamping formability of samples were greatly improved by RUB and annealing at 260℃ for 1 h, and elongation to fracture and Erichsen value were increased to 38% and 67%, respectively.展开更多
By applying the reinforcing and toughening effect of calcium carbonate (CaCO3) nanoparticles on polypropylene, foam sheets of good performance were successfully fabricated by extrusion. The equipment and conditions ...By applying the reinforcing and toughening effect of calcium carbonate (CaCO3) nanoparticles on polypropylene, foam sheets of good performance were successfully fabricated by extrusion. The equipment and conditions of the extrusion were explored. The mechanical properties of the produced foam sheets were tested. The effect of CaCO3 nano-particles on the mechanical properties and the cellular structure of the sheets was comprehensively studied. The experimental results show that the optimum content of CaCO3 nano-particles in the composite material was -4wt%. At this content, the nano-particles were well dispersed in the substrate, and the composite material had maximum tensile strength and impact strength. Surface treatment of the nano-particles only affected the impact strength of the composite material. CaCO3 micro-particles, on the other hand, showed little effect on the properties of the composite material when the micro-particles content was less than 5 wt%. At a content higher than 5wt%, the properties of the composite material significantly worsened.展开更多
Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive...Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.展开更多
The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynam...The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.展开更多
Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability a...Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability and microstructure of target sheet in overlapping sheets bulging process. Sheet sliding experiment was performed to measure interface friction coefficient of 5 A02/SUS304 in different lubricating conditions and normal pressure. Overlapping sheets bulging experiment of 5 A02/SUS304 was carried out to investigate the influence of interface friction on limit bulging height, wall thickness distribution, microstructure and fracture morphology of 5 A02 bulging specimens. The results showed that increase of the interface friction coefficient of 5 A02/SUS304 could effectively improve the limit bulging height and deformation uniformity of 5 A02. And the fracture style of 5 A02 transformed from toughness fracture of dimples-micropores gathered to fault slip separation fracture. Therefore, target sheet bulging formability is improved with the increase of interface friction coefficient.展开更多
Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of contin...Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved.展开更多
The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of th...The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of the edge features coarse grains and mixed sized grains. The strength of the sheet edge is slightly lower than that at the center. Besides, the formability is obviously worsened. The plastic strain ratios along the longitudinal and transverse orientations are 0.31 and 0.6, respectively, with distinct anisotropy. The plastic strain ratio at the edge is obviously lower than that at the middle of the steel sheet. The observed microstructural characteristics and mechanical properties at the edge of the steel sheet can be attributed to the lower rolling temperature in the two-phase region of pro-eutectoid ferrite and austenite. These differences in microstructure and mechanical properties at the edge of the steel sheet lead to the generation of earing and cracking defects while drawing. The microstructure and mechanical properties at the edge of low carbon pickled steel sheets can be improved via the optimization of the rolling process and the adjustment of chemical composition.展开更多
A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach. A Hamiltonian system is established by introduc...A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach. A Hamiltonian system is established by introducing a total unknown vector consisting of the displacement amplitude, rotation angle, shear force, and bending moment. The high-order governing differential equation of the vibration of SLGSs is transformed into a set of ordinary differential equations in symplectic space. Exact solutions for free vibration are obtianed by the method of separation of variables without any trial shape functions and can be expanded in series of symplectic eigenfunctions. Analytical frequency equations are derived for all six possible boundary conditions. Vibration modes are expressed in terms of the symplectic eigenfunctions. In the numerical examples, comparison is presented to verify the accuracy of the proposed method. Comprehensive numerical examples for graphene sheets with Levy-type boundary conditions are given. A parametric study of the natural frequency is also included.展开更多
Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate...Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate. In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes. U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels). Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress. Die corner is the position where surface damage initiates. For HSS sheet, surface damage is of major interest due to high forming pressure. The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool. However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best.展开更多
AIM: To evaluate the toxicity of endogeneous peroxynitrite on transplanted retinal pigment epithelial (RPE) sheets and the effect of puerarin on their survival in the C57BL/6 mice after RPE sheets have been transplant...AIM: To evaluate the toxicity of endogeneous peroxynitrite on transplanted retinal pigment epithelial (RPE) sheets and the effect of puerarin on their survival in the C57BL/6 mice after RPE sheets have been transplanted into SD rats' subretinal space. METHODS: C57BL/6 mice eyes were used to culture RPE cells. Ninety-six SD rats were involved in the experiment. They were divided into control( block control), streptozotocin (STZ, negative control), untransplanted RPE (positive control) and transplanted RPE groups respectively. Diabetes was induced in SD rats by intra-peritoneal STZ injection in the latter three groups. Saline was injected into the subretinal space of 24 SD rats in the untransplanted RPE group and primary RPE sheets were injected into the subretinal space of 24 SD rats in the transplanted RPE group. Puerarin (45 mg/kg) was administrated into both untransplanted RPE and transplanted RPE groups of diabetic rats through intra-peritoneal injection route after RPE sheets transplantation. At 20,40,60 days after surgery, Western blotting analysis, DNA ladder and RT-PCR were used for determining the differences in expression of nitrotyrosine (NT, the foot print of peroxynitrite), apoptosis and iNOS mRNA in the control, STZ, untransplanted RPE and transplanted RPE groups respectively. HE staining was used for determining the RPE survival in the subretinal space of the transplanted RPE group. RESULTS: Apoptosis and expression of NT and iNOS mRNA were observed in STZ, untransplanted RPE and transplanted RPE groups, but were delayed in untransplanted RPE and transplanted RPE groups in a time-dependent manner compared with control and STZ groups (P < 0.01). There were no differences between the two groups (P > 0.01). NT, DNA ladder, iNOS mRNA were down-regulated, which were associated with the decrease of expression of peroxynitrite. Numerous pigmented cells emerged and increased in number in the subretinal space during the 60-day observation period after transplantation. On day 20, heavily pigmented cells were visible at the transplant site; On day 40, monolayer and multilayered transplant was visible in the subretinal space; On day 60, heavily pigmented monolayer and multilayered transplants with round apical profile were present along Bruch's membrane. CONCLUSION: Puerarin increased the 60-day survival of C57BL/6 mice RPE xenografts in the SD rats' subretinal space, which may be related to its direct inhibition of apoptosis of RPE cells and antagnism of damage of peroxynitrite to RPE cells.展开更多
The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the r...The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.展开更多
基金supported by NSFC grants(42188101,42174209,42174207)the Specialized Research Fund for State Key Laboratories of Chinathe Strategic Pioneer Program on Space Science II,Chinese Academy of Sciences,grants XDA15350201,XDA15052500.
文摘Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.
文摘Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across various fields.Still,until now,mass fabrication has been impossible,leaving the material as something of a laboratory curiosity rather than an industrial reality.But a team of researchers from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences has recently developed a novel exfoliation process–using chemical solutions to peel off thin layers from their parent compounds,creating atomically thin sheets–that looks set to finally deliver on the ultra-thin substance’s promise.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness.
基金Project(51204003)supported by the National Natural Science Foundation of ChinaProject(KJ2011A051)supported by the Scientific Research Foundation of Education Department of Anhui Province,China
文摘The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usually exhibit particular preferred orientations and then alter the total texture feature of rolled sheets.Ca solid solution into Mg matrix serves to the formation of texture component with c-axis rotated away from normal direction towards transverse direction and then weakens the overall texture intensity,resulting in a similar anisotropic characteristic to RE-containing Mg alloys.
基金This work was supported by the Natural Science Foundation of Shanxi Province (No.2009011099), the Program for the Top Science and Technology Innovation Team of Higher Learning Institutions of Shanxi, and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.
文摘Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.
基金The National Natural Science Foundation of China(No.51108238)
文摘In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.
基金Project(HIT.NSRIF.2009033) supported by the Scientific Research Foundation of Harbin Institute of Technology,China
文摘The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the hot pressing adhesive method. Then, the uniaxial tensile tests were conducted to investigate the mechanical properties of AA5052/polyethylene/ AA5052 sandwich sheets, and the stretching tests were carried out to investigate the influences of polymer core thickness on the limit dome height of the sandwich sheet. The forming limit curves for three kinds of sandwich sheets were obtained. The experimental results show that the forming limit of the AA5052/polyethylene/AA5052 sandwich sheet is higher than that of the monolithic AA5052 sheet, and it increases with increasing the thickness of polyethylene core.
基金Project supported by Beijing Laboratory of Metallic Materials and Processing for Modern Transportation
文摘The mechanical properties, microstructures, and fractographs of TA15 sheets vacuum-annealed under different patterns were investigated. The results indicate that vacuum annealing significantly improves the mechanical properties of the sheets in comparison with those after ambient annealing. With increasing the annealing temperature, the phase boundaries and secondary a-phase increase, whereas the volume fraction of primary a-phase decreases, resulting in increased strength and decreased elongation A relatively fine secondary a-phase is obtained after double annealing. The desirable mechanical properties (i.e., ultimate tensile strength, yield strength, and elongation are 1070 MPa, 958 MPa, and 15%, respectively) are obtained through double annealing ((950 ℃/2 h, AC)+(600 ℃/2 h, AC)). The fractographs obtained after tensile tests show that the deepest and largest dimples are formed in the specimen annealed at 850 ℃, which indicates that the best plasticity is obtained at this annealing temperature.
基金supported by the National Natural Science Foundation of China under Grant No. 50504019Natural Science Foundation Project of CQ CSTC under Grant No. 2008BB4040
文摘In this paper, repeated unidirectional bending (RUB), was applied to improve the texture of AZ31B magnesium alloy sheets so as to enhance their stamping properties. The samples undergoing RUB were annealed at different temperatures. The mechanical properties, formability, textural components and microstructure of the samples before and after RUB were characterized and compared. It was found that the basal textural component was reduced dramatically by RUB, and that (1212) and (1211) textural components appeared. Annealing has a great effect on the mechanical properties of samples undergoing RUB. The plasticity and stamping formability of samples were greatly improved by RUB and annealing at 260℃ for 1 h, and elongation to fracture and Erichsen value were increased to 38% and 67%, respectively.
基金the National Natural Science Foundation of China(No.19632004 and 10172074)
文摘By applying the reinforcing and toughening effect of calcium carbonate (CaCO3) nanoparticles on polypropylene, foam sheets of good performance were successfully fabricated by extrusion. The equipment and conditions of the extrusion were explored. The mechanical properties of the produced foam sheets were tested. The effect of CaCO3 nano-particles on the mechanical properties and the cellular structure of the sheets was comprehensively studied. The experimental results show that the optimum content of CaCO3 nano-particles in the composite material was -4wt%. At this content, the nano-particles were well dispersed in the substrate, and the composite material had maximum tensile strength and impact strength. Surface treatment of the nano-particles only affected the impact strength of the composite material. CaCO3 micro-particles, on the other hand, showed little effect on the properties of the composite material when the micro-particles content was less than 5 wt%. At a content higher than 5wt%, the properties of the composite material significantly worsened.
基金Funded by the National Natural Science Foundation of China(No.50678050)
文摘Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.
基金supported by the Fujian Provincial Natural Science Foundation(No.E0210011)the Educational Commission of Fujian province(No.K20014).
文摘The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.
基金Funded by the National Natural Science Foundation of China(No.51575364)the Program for Liaoning Innovation Talents in University(No.LR2017069)the Shenyang Science and Technology Innovation Support Program for Young Talented People(No.RC180189)
文摘Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability and microstructure of target sheet in overlapping sheets bulging process. Sheet sliding experiment was performed to measure interface friction coefficient of 5 A02/SUS304 in different lubricating conditions and normal pressure. Overlapping sheets bulging experiment of 5 A02/SUS304 was carried out to investigate the influence of interface friction on limit bulging height, wall thickness distribution, microstructure and fracture morphology of 5 A02 bulging specimens. The results showed that increase of the interface friction coefficient of 5 A02/SUS304 could effectively improve the limit bulging height and deformation uniformity of 5 A02. And the fracture style of 5 A02 transformed from toughness fracture of dimples-micropores gathered to fault slip separation fracture. Therefore, target sheet bulging formability is improved with the increase of interface friction coefficient.
基金the Key Research Base for Humanities and Social Sciences of Zhejiang Provincial High Education Talents(Statistics of Zhejiang Gongshang University)the Natural ScienceFoundation of Shaanxi Province(2005A08,2006A14)
文摘Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved.
文摘The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of the edge features coarse grains and mixed sized grains. The strength of the sheet edge is slightly lower than that at the center. Besides, the formability is obviously worsened. The plastic strain ratios along the longitudinal and transverse orientations are 0.31 and 0.6, respectively, with distinct anisotropy. The plastic strain ratio at the edge is obviously lower than that at the middle of the steel sheet. The observed microstructural characteristics and mechanical properties at the edge of the steel sheet can be attributed to the lower rolling temperature in the two-phase region of pro-eutectoid ferrite and austenite. These differences in microstructure and mechanical properties at the edge of the steel sheet lead to the generation of earing and cracking defects while drawing. The microstructure and mechanical properties at the edge of low carbon pickled steel sheets can be improved via the optimization of the rolling process and the adjustment of chemical composition.
基金support of the National Natural Science Foundation of China (Grant 11672054)the Research Grant Council of Hong Kong (11215415)the National Basic Research Program of China (973 Program) (Grant 2014CB046803)
文摘A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach. A Hamiltonian system is established by introducing a total unknown vector consisting of the displacement amplitude, rotation angle, shear force, and bending moment. The high-order governing differential equation of the vibration of SLGSs is transformed into a set of ordinary differential equations in symplectic space. Exact solutions for free vibration are obtianed by the method of separation of variables without any trial shape functions and can be expanded in series of symplectic eigenfunctions. Analytical frequency equations are derived for all six possible boundary conditions. Vibration modes are expressed in terms of the symplectic eigenfunctions. In the numerical examples, comparison is presented to verify the accuracy of the proposed method. Comprehensive numerical examples for graphene sheets with Levy-type boundary conditions are given. A parametric study of the natural frequency is also included.
基金supported by the National Natural Science Foundation of China under grant No. 50605043
文摘Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate. In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes. U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels). Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress. Die corner is the position where surface damage initiates. For HSS sheet, surface damage is of major interest due to high forming pressure. The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool. However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best.
基金Supported by Hebei Province Science Foundation, China (No.07276101D-3)Clinical Science Project Fund of the Ministry of Health in Hebei Province, China (No. 03078)Foreign Studying Project Fund in Hebei Province, China (No. 07-03)
文摘AIM: To evaluate the toxicity of endogeneous peroxynitrite on transplanted retinal pigment epithelial (RPE) sheets and the effect of puerarin on their survival in the C57BL/6 mice after RPE sheets have been transplanted into SD rats' subretinal space. METHODS: C57BL/6 mice eyes were used to culture RPE cells. Ninety-six SD rats were involved in the experiment. They were divided into control( block control), streptozotocin (STZ, negative control), untransplanted RPE (positive control) and transplanted RPE groups respectively. Diabetes was induced in SD rats by intra-peritoneal STZ injection in the latter three groups. Saline was injected into the subretinal space of 24 SD rats in the untransplanted RPE group and primary RPE sheets were injected into the subretinal space of 24 SD rats in the transplanted RPE group. Puerarin (45 mg/kg) was administrated into both untransplanted RPE and transplanted RPE groups of diabetic rats through intra-peritoneal injection route after RPE sheets transplantation. At 20,40,60 days after surgery, Western blotting analysis, DNA ladder and RT-PCR were used for determining the differences in expression of nitrotyrosine (NT, the foot print of peroxynitrite), apoptosis and iNOS mRNA in the control, STZ, untransplanted RPE and transplanted RPE groups respectively. HE staining was used for determining the RPE survival in the subretinal space of the transplanted RPE group. RESULTS: Apoptosis and expression of NT and iNOS mRNA were observed in STZ, untransplanted RPE and transplanted RPE groups, but were delayed in untransplanted RPE and transplanted RPE groups in a time-dependent manner compared with control and STZ groups (P < 0.01). There were no differences between the two groups (P > 0.01). NT, DNA ladder, iNOS mRNA were down-regulated, which were associated with the decrease of expression of peroxynitrite. Numerous pigmented cells emerged and increased in number in the subretinal space during the 60-day observation period after transplantation. On day 20, heavily pigmented cells were visible at the transplant site; On day 40, monolayer and multilayered transplant was visible in the subretinal space; On day 60, heavily pigmented monolayer and multilayered transplants with round apical profile were present along Bruch's membrane. CONCLUSION: Puerarin increased the 60-day survival of C57BL/6 mice RPE xenografts in the SD rats' subretinal space, which may be related to its direct inhibition of apoptosis of RPE cells and antagnism of damage of peroxynitrite to RPE cells.
文摘The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.