The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the a...The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.展开更多
A memory-type control chart utilizes previous information for chart construction.An example of a memory-type chart is an exponentially-weighted moving average(EWMA)control chart.The EWMA control chart is well-known an...A memory-type control chart utilizes previous information for chart construction.An example of a memory-type chart is an exponentially-weighted moving average(EWMA)control chart.The EWMA control chart is well-known and widely employed by practitioners for monitoring small and moderate process mean shifts.Meanwhile,the EWMA median chart is robust against outliers.In light of this,the economic model of the EWMA and EWMA median control charts are commonly considered.This study aims to investigate the effect of cost parameters on the out-of-control average run lengthðARL_(1)Þin implementing EWMA and EWMA median control charts.The economic model was used to compute the ARL_(1) parameter.The 14 input parameters were identified and the analysis was carried out based on the one-parameter-at-a-time basis.When the input parameters change based on a predetermined percentage,the ARL_(1) is affected.According to the results of the EWMA chart,nine input parameters had an effect andfive input parameters had no effect on the ARL_(1) parameter.Further,only seven of the 14 input parameters had an effect on the ARL_(1) of the EWMA median chart.However,the effect of each input parameter on the ARL_(1) was different.Moreover,the ARL_(1) for the EWMA median chart was smaller than the EWMA chart.This analysis is crucial to observe and determine the input parameters that have a significant impact on the ARL_(1) of the EMWA and EWMA median control charts.Hence,practitioners can obtain an overview of the influence of the input parameters on the ARL_(1) when implementing the EWMA and EWMA median control charts.展开更多
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
基金Thailand Science ResearchInnovation Fund,and King Mongkut's University of Technology North Bangkok Contract No.KMUTNB-FF-65-45.
文摘The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.
基金funded by the Universiti Kebangsaan Malaysia,Geran Galakan Penyelidikan,GGP-2020-040.
文摘A memory-type control chart utilizes previous information for chart construction.An example of a memory-type chart is an exponentially-weighted moving average(EWMA)control chart.The EWMA control chart is well-known and widely employed by practitioners for monitoring small and moderate process mean shifts.Meanwhile,the EWMA median chart is robust against outliers.In light of this,the economic model of the EWMA and EWMA median control charts are commonly considered.This study aims to investigate the effect of cost parameters on the out-of-control average run lengthðARL_(1)Þin implementing EWMA and EWMA median control charts.The economic model was used to compute the ARL_(1) parameter.The 14 input parameters were identified and the analysis was carried out based on the one-parameter-at-a-time basis.When the input parameters change based on a predetermined percentage,the ARL_(1) is affected.According to the results of the EWMA chart,nine input parameters had an effect andfive input parameters had no effect on the ARL_(1) parameter.Further,only seven of the 14 input parameters had an effect on the ARL_(1) of the EWMA median chart.However,the effect of each input parameter on the ARL_(1) was different.Moreover,the ARL_(1) for the EWMA median chart was smaller than the EWMA chart.This analysis is crucial to observe and determine the input parameters that have a significant impact on the ARL_(1) of the EMWA and EWMA median control charts.Hence,practitioners can obtain an overview of the influence of the input parameters on the ARL_(1) when implementing the EWMA and EWMA median control charts.
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.