Recently, Suzuki [T. Suzuki characterizes metric completeness, Proc. A generalized Banach contractlon principle that Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of t...Recently, Suzuki [T. Suzuki characterizes metric completeness, Proc. A generalized Banach contractlon principle that Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and char- acterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a self-mapping on a partial metric space that characterizes the partial metric O- completeness. In this article, we introduce the notion of partial G-metric spaces and prove a result of Suzuki type in the setting of partial G-metric spaces. We deduce also a result of common fixed point.展开更多
基金supported by Università degli Studi di Palermo(Local University Project ex 60%)
文摘Recently, Suzuki [T. Suzuki characterizes metric completeness, Proc. A generalized Banach contractlon principle that Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and char- acterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a self-mapping on a partial metric space that characterizes the partial metric O- completeness. In this article, we introduce the notion of partial G-metric spaces and prove a result of Suzuki type in the setting of partial G-metric spaces. We deduce also a result of common fixed point.