By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam w...By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.展开更多
The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable ...The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable equations and the most important functional equation in several variables, namely, the Cauchy equation. Moreover, a few corollaries corresponding to some known hyperstability outcomes are presented.展开更多
In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
Recently many authors have generalized the famous Ky Fan's minimax inequality. In this paper, we put forward T-diagonal convexity (concavity) conditions and develop the main results in this respect. Next, we discu...Recently many authors have generalized the famous Ky Fan's minimax inequality. In this paper, we put forward T-diagonal convexity (concavity) conditions and develop the main results in this respect. Next, we discuss some fixed point problems, and generalize the Fan-Glicksberg's fixed point theorem[14].展开更多
Results regarding best approximation and best Simultaneous approximation on convex metric spaces are Obtained.Existence of fixed points for an ultimately nonexpansive semigroup of mappings is also shown.
Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-value...Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.展开更多
For a physically possible deformation field of a continuum, the deformation gradient function F can be decomposed into direct sum of a symmetric tensor S and on orthogonal tensor R, which is called S-R decomposition t...For a physically possible deformation field of a continuum, the deformation gradient function F can be decomposed into direct sum of a symmetric tensor S and on orthogonal tensor R, which is called S-R decomposition theorem. In this paper, the S-R decomposition unique existence theorem is proved, by employing matrix and tensor method. Also, a brief proof of its objectivity is given.展开更多
By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of nonc...By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of noncompact G-convex spaces are proved. As applications, some nonempty intersetion theorems of Ky Fan type for a family of subsets of the product space of G convex spaces are proved; An existence theorem of solutions for a system of nonlinear inequalities is given in G-convex spaces and some equilibrium existence of abstract economies are also obtained in G convex spaces. Our theorems theorems of improve, unify and generalized many important known results in recent literature.展开更多
In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a m...In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].展开更多
In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniq...In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.展开更多
In this paper the existence of solutions of a boundary value problem forimpulsively differential equations that is difficult to solve by the upper and lowersolution method will be proved by means of Schauder’s fixed ...In this paper the existence of solutions of a boundary value problem forimpulsively differential equations that is difficult to solve by the upper and lowersolution method will be proved by means of Schauder’s fixed point theorem,whichimproves some existing results.展开更多
This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Ca...This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Caristi’s fixed point theorem.The results stated in this paper improve and strengthen the corresponding results in[4].展开更多
The main purpose of this paper is devoted to generalizing the results of Browder[1,2]This paper consists of four parts. In the first part, we introduce the concepts of multivalued (S) and (S), type mappings and the co...The main purpose of this paper is devoted to generalizing the results of Browder[1,2]This paper consists of four parts. In the first part, we introduce the concepts of multivalued (S) and (S), type mappings and the concepts of the limits of multivalued (S) and (S) + type mappings. These kinds of mappings contain many monotone type mappings, such as maximal monotone mapping, bounded pseudo-monotone mapping and bounded generalized pseudo-monotone mapping, as its special cases. In the second part we define the pseudo-degree for (S) type mapping and the degree for (S)+ type mapping. These two kinds of degrees are all the generalizations of the degree defined by Browder[1,2] As applications, we utilize the degree theory presented in part 2 to study the existence of solutions for the multivalued operator equations (see part 3) and to obtain some new fixed point theorems in part 4.展开更多
In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi...In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s results, we developed ideas that many known fixed point theorems can easily be derived from the Caristi theorem.展开更多
For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbation...For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.展开更多
This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed ...This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.展开更多
Let X be a metric space with an ordering structure,A: X→X is a operator and x≤Ax for any x∈X. In this paper we prove a new fixed point theorem, which generalizes famous caristi fixed point theorem.
The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em...The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em><sub>0</sub> such that<em> f</em>(<em>x</em><sub>0</sub>) = <em>x</em><sub>0</sub>. Under suitable conditions, this fixed point corresponds to the throat of a traversable wormhole, <em>i.e.</em>, <em>b</em>(<em>r</em><sub>0</sub>) = <em>r</em><sub>0</sub> for the shape function <em>b</em> = <em>b</em>(<em>r</em>). The possible existence of wormholes can therefore be deduced from purely mathematical considerations without going beyond the existing physical requirements.展开更多
In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the...In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.展开更多
Let X be a weakly Cauchy normed space in which the parallelogram law holds,C be a bounded closed convex subset of X with one contracting point and T be an{a,b,c}-generalized-nonexpansive mapping from C into C.We prove...Let X be a weakly Cauchy normed space in which the parallelogram law holds,C be a bounded closed convex subset of X with one contracting point and T be an{a,b,c}-generalized-nonexpansive mapping from C into C.We prove that the infimum of the set{‖x-T(x)‖}on C is zero,study some facts concerning the{a,b,c}-generalized-nonexpansive mapping and prove that the asymptotic center of any bounded sequence with respect to C is singleton.Depending on the fact that the{a,b,0}-generalized-nonexpansive mapping from C into C has fixed points,accord-ingly,another version of the Browder's strong convergence theorem for mappings is given.展开更多
文摘By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.
文摘The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable equations and the most important functional equation in several variables, namely, the Cauchy equation. Moreover, a few corollaries corresponding to some known hyperstability outcomes are presented.
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
基金The project supported by the Science Fund of Jiangsu
文摘Recently many authors have generalized the famous Ky Fan's minimax inequality. In this paper, we put forward T-diagonal convexity (concavity) conditions and develop the main results in this respect. Next, we discuss some fixed point problems, and generalize the Fan-Glicksberg's fixed point theorem[14].
文摘Results regarding best approximation and best Simultaneous approximation on convex metric spaces are Obtained.Existence of fixed points for an ultimately nonexpansive semigroup of mappings is also shown.
文摘Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.
文摘For a physically possible deformation field of a continuum, the deformation gradient function F can be decomposed into direct sum of a symmetric tensor S and on orthogonal tensor R, which is called S-R decomposition theorem. In this paper, the S-R decomposition unique existence theorem is proved, by employing matrix and tensor method. Also, a brief proof of its objectivity is given.
文摘By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of noncompact G-convex spaces are proved. As applications, some nonempty intersetion theorems of Ky Fan type for a family of subsets of the product space of G convex spaces are proved; An existence theorem of solutions for a system of nonlinear inequalities is given in G-convex spaces and some equilibrium existence of abstract economies are also obtained in G convex spaces. Our theorems theorems of improve, unify and generalized many important known results in recent literature.
基金This work was supported by Research Professional Development Project under the Science Achievement Scholarship of Thailand(SAST)and Thammasat University Research Fund,Contract No.TUGG 33/2562The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under grant no.MRG6180283 for financial support during the preparation of this manuscript.
文摘In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].
文摘In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.
文摘In this paper the existence of solutions of a boundary value problem forimpulsively differential equations that is difficult to solve by the upper and lowersolution method will be proved by means of Schauder’s fixed point theorem,whichimproves some existing results.
文摘This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Caristi’s fixed point theorem.The results stated in this paper improve and strengthen the corresponding results in[4].
文摘The main purpose of this paper is devoted to generalizing the results of Browder[1,2]This paper consists of four parts. In the first part, we introduce the concepts of multivalued (S) and (S), type mappings and the concepts of the limits of multivalued (S) and (S) + type mappings. These kinds of mappings contain many monotone type mappings, such as maximal monotone mapping, bounded pseudo-monotone mapping and bounded generalized pseudo-monotone mapping, as its special cases. In the second part we define the pseudo-degree for (S) type mapping and the degree for (S)+ type mapping. These two kinds of degrees are all the generalizations of the degree defined by Browder[1,2] As applications, we utilize the degree theory presented in part 2 to study the existence of solutions for the multivalued operator equations (see part 3) and to obtain some new fixed point theorems in part 4.
文摘In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s results, we developed ideas that many known fixed point theorems can easily be derived from the Caristi theorem.
文摘For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.
文摘This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.
文摘Let X be a metric space with an ordering structure,A: X→X is a operator and x≤Ax for any x∈X. In this paper we prove a new fixed point theorem, which generalizes famous caristi fixed point theorem.
文摘The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em><sub>0</sub> such that<em> f</em>(<em>x</em><sub>0</sub>) = <em>x</em><sub>0</sub>. Under suitable conditions, this fixed point corresponds to the throat of a traversable wormhole, <em>i.e.</em>, <em>b</em>(<em>r</em><sub>0</sub>) = <em>r</em><sub>0</sub> for the shape function <em>b</em> = <em>b</em>(<em>r</em>). The possible existence of wormholes can therefore be deduced from purely mathematical considerations without going beyond the existing physical requirements.
文摘In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.
文摘Let X be a weakly Cauchy normed space in which the parallelogram law holds,C be a bounded closed convex subset of X with one contracting point and T be an{a,b,c}-generalized-nonexpansive mapping from C into C.We prove that the infimum of the set{‖x-T(x)‖}on C is zero,study some facts concerning the{a,b,c}-generalized-nonexpansive mapping and prove that the asymptotic center of any bounded sequence with respect to C is singleton.Depending on the fact that the{a,b,0}-generalized-nonexpansive mapping from C into C has fixed points,accord-ingly,another version of the Browder's strong convergence theorem for mappings is given.